Suppr超能文献

表面张力对人肺腺泡区流体动力学和肺泡力学的影响。

Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung.

作者信息

Francis Isabella, Saha Suvash C

机构信息

School of Mechanical and Mechatronic Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, Australia.

出版信息

Heliyon. 2022 Oct 12;8(10):e11026. doi: 10.1016/j.heliyon.2022.e11026. eCollection 2022 Oct.

Abstract

BACKGROUND

Computational fluid dynamics (CFD) simulations, setups, and experimental ex-vivo approaches have been applied to numerous alveolar geometries over the past years. They aimed to study and examine airflow patterns, particle transport, particle propagation depth, particle residence times, and particle-alveolar wall deposition fractions. These studies are imperative to both pharmaceutical and toxicological studies, especially nowadays with the escalation of the menacing COVID-19 virus. However, most of these studies ignored the surfactant layer that covers the alveoli and the effect of the air-surfactant surface tension on flow dynamics and air-alveolar surface mechanics.

METHODS

The present study employs a realistic human breathing profile of 4.75s for one complete breathing cycle to emphasize the importance of the surfactant layer by numerically comparing airflow phenomena between a surfactant-enriched and surfactant-deficient model. The acinar model exhibits physiologically accurate alveolar and duct dimensions extending from lung generations 18 to 23. Airflow patterns in the surfactant-enriched model support previous findings that the recirculation of the flow is affected by its propagation depth. Proximal lung generations experience dominant recirculating flow while farther generations in the distal alveolar region exhibit dominant radial flows. In the surfactant-enriched model, surface tension values alternate during inhalation and exhalation, with values increasing to 25 mN/m at the inhalation and decreasing to 1 mN/m at the end of the exhalation. In the surfactant-deficient model, only water coats the alveolar walls with a high surface tension value of 70 mN/m.

RESULTS

Results showed that surfactant deficiency in the alveoli adversely alters airflow behavior and generates unsteady chaotic breathing through the production of vorticities, accompanied by higher vorticity magnitudes (100% increase at the end of exhalation) and higher velocity magnitudes (8.69% increase during inhalation and 11.9% increase during exhalation). In addition, high air-water surface tension in the surfactant-deficient case was found to induce higher shear stress values (by around a factor of 10) on the alveolar walls than that of the surfactant-enriched case.

CONCLUSION

Overall, it was concluded that the presence of the surfactant improves respiratory mechanics and allows for smooth breathing and normal respiration.

摘要

背景

在过去几年中,计算流体动力学(CFD)模拟、设置和体外实验方法已应用于众多肺泡几何模型。这些研究旨在研究和检查气流模式、颗粒传输、颗粒传播深度、颗粒停留时间以及颗粒与肺泡壁的沉积分数。这些研究对药物和毒理学研究都至关重要,尤其是在如今威胁巨大的新冠病毒不断升级的情况下。然而,这些研究大多忽略了覆盖肺泡的表面活性剂层以及气 - 表面活性剂表面张力对流动动力学和空气 - 肺泡表面力学的影响。

方法

本研究采用一个完整呼吸周期为4.75秒的真实人类呼吸曲线,通过数值比较富含表面活性剂模型和缺乏表面活性剂模型之间的气流现象,来强调表面活性剂层的重要性。腺泡模型展示了从第18代到第23代肺的生理上精确的肺泡和导管尺寸。富含表面活性剂模型中的气流模式支持了先前的研究结果,即气流的再循环受其传播深度的影响。近端肺代经历主要的再循环气流,而远端肺泡区域更远的肺代则表现出主要的径向气流。在富含表面活性剂的模型中,表面张力值在吸气和呼气过程中交替变化,吸气时增加到25 mN/m,呼气结束时降低到1 mN/m。在缺乏表面活性剂的模型中,只有水以70 mN/m的高表面张力值覆盖肺泡壁。

结果

结果表明,肺泡中表面活性剂的缺乏会对气流行为产生不利影响,并通过产生涡度产生不稳定的混沌呼吸,同时伴有更高的涡度大小(呼气结束时增加100%)和更高的速度大小(吸气时增加8.69%,呼气时增加11.9%)。此外,发现在缺乏表面活性剂的情况下,高气 - 水表面张力在肺泡壁上诱导的剪切应力值比富含表面活性剂的情况高约10倍。

结论

总体而言,得出的结论是表面活性剂的存在改善了呼吸力学,使呼吸顺畅且正常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1d2/9587277/f7be5ccd7e18/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验