Archaea Physiology & Biotechnology Group, Department Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Austria.
Commun Biol. 2021 Mar 5;4(1):289. doi: 10.1038/s42003-021-01828-5.
Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyr Gly Tyr in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector.
目前正在开发利用二氧化碳和分子氢转化为甲烷 (CH) 的生物工艺,以实现向可再生能源生产系统的过渡。在这项研究中,我们对 80 种产甲烷古菌(产甲烷菌)进行了全面的生理和生物技术检查,定量研究了在高达 50 巴的超高压下,关于培养基、宏量和微量营养素供应、特定基因组特征和细胞包膜结构的生长和 CH 生产动力学。我们的分析旨在系统地优先考虑高压和高性能产甲烷菌。我们发现,嗜热产甲烷菌 Methanotorris igneus 和 Methanocaldococcus jannaschii 是高压 CH 细胞工厂。此外,我们的分析还表明,高性能产甲烷菌表面覆盖有 S-层,并且它们在甲基辅酶 M 还原酶的 alpha 亚基中含有氨基酸基序 Tyr Gly Tyr。因此,纯培养物中的高压生物 CH 生产可能为向碳中和生物能源部门的过渡提供一条有目的的途径。