Blazevic Amir, Albu Mihaela, Mitsche Stefan, Rittmann Simon K-M R, Habler Gerlinde, Milojevic Tetyana
Extremophiles/Space Biochemistry Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria.
Graz Centre for Electron Microscopy, Graz, Austria.
Front Microbiol. 2019 Jul 2;10:1492. doi: 10.3389/fmicb.2019.01492. eCollection 2019.
The tungsten-microbial interactions and microbial bioprocessing of tungsten ores, which are still underexplored, are the focus of the current study. Here we show that the biotransformation of tungsten mineral scheelite performed by the extreme thermoacidophile leads to the breakage of scheelite structure and subsequent tungsten solubilization. Total soluble tungsten is significantly higher in cultures containing grown on scheelite than the abiotic control, indicating active bioleaching. Advanced analytical electron microscopy was used in order to achieve nanoscale resolution ultrastructural studies of grown on tungsten bearing scheelite. In particular, we describe that mediated the biotransformation of scheelite, which was accompanied by the release of tungsten into solution and tungsten biomineralization of the cell surface. Furthermore, we observed intracellular incorporation of redox heterogenous Mn- and Fe-containing nano-clusters. Our results highlight unique metallophilic life in hostile environments extending the knowledge of tungsten biogeochemistry. Based on these findings biohydrometallurgical processing of tungsten ores can be further explored. Importantly, biogenic tungsten carbide-like nanolayers described herein are potential targets for developing nanomaterial biotechnology.
钨与微生物的相互作用以及钨矿石的微生物生物处理仍未得到充分探索,是当前研究的重点。在此我们表明,极端嗜热嗜酸菌对钨矿物白钨矿的生物转化导致白钨矿结构破坏及随后的钨溶解。在以白钨矿为生长基质的培养物中,总可溶性钨显著高于非生物对照,表明存在活跃的生物浸出。为了对白钨矿上生长的[微生物名称未给出]进行纳米级分辨率的超微结构研究,使用了先进的分析电子显微镜。特别是,我们描述了[微生物名称未给出]介导了白钨矿的生物转化,这伴随着钨释放到溶液中以及细胞表面的钨生物矿化。此外,我们观察到细胞内存在氧化还原异质的含锰和含铁纳米簇。我们的结果突出了在恶劣环境中独特的亲金属生命,扩展了钨生物地球化学的知识。基于这些发现,可以进一步探索钨矿石的生物湿法冶金处理。重要的是,本文所述的生物源碳化钨状纳米层是开发纳米材料生物技术的潜在目标。