Suppr超能文献

工程化特异性降解活性 RAS 的枯草杆菌蛋白酶。

Engineering subtilisin proteases that specifically degrade active RAS.

机构信息

Potomac Affinity Proteins, North Potomac, MD, USA.

Institute for Bioscience and Biotechnology Research, Rockville, MD, USA.

出版信息

Commun Biol. 2021 Mar 5;4(1):299. doi: 10.1038/s42003-021-01818-7.

Abstract

We describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.

摘要

我们描述了经过工程改造的枯草杆菌蛋白酶的设计、动力学特性和结构,这些蛋白酶通过切割开关 2 中的保守序列来降解 RAS 的活性形式。RAS 是一种信号蛋白,当其发生突变时,会导致三分之一的人类癌症。为了提高对 RAS 靶序列的特异性,活性位点被修饰为依赖辅因子(咪唑或亚硝酸盐),并且蛋白酶亚位点被工程改造以在底物和辅因子结合之间建立连接。活性 RAS 的选择性蛋白水解来自两步过程,其中亚位点相互作用促进辅因子的有效结合,从而实现切割。以这种方式工程改造的蛋白酶可特异性地在体外切割活性 RAS,耗尽细菌报告系统中 RAS 的水平,并且还可在人细胞培养物中降解 RAS。尽管这些蛋白酶靶向活性 RAS,但基本的设计原则是通用的,并且可以适用于许多靶蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9690/7935941/060dee54ed92/42003_2021_1818_Fig1_HTML.jpg

相似文献

1
Engineering subtilisin proteases that specifically degrade active RAS.
Commun Biol. 2021 Mar 5;4(1):299. doi: 10.1038/s42003-021-01818-7.
3
Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
Biochemistry. 1996 Oct 22;35(42):13579-85. doi: 10.1021/bi961543h.
4
Engineering a substrate-specific cold-adapted subtilisin.
Protein Eng Des Sel. 2004 Feb;17(2):149-56. doi: 10.1093/protein/gzh019. Epub 2004 Feb 3.
5
Engineering subtilisin BPN' for site-specific proteolysis.
Proteins. 1989;6(3):240-8. doi: 10.1002/prot.340060306.
7
K-Ras Has a Potential Allosteric Small Molecule Binding Site.
Biochemistry. 2019 May 28;58(21):2542-2554. doi: 10.1021/acs.biochem.8b01300. Epub 2019 May 14.
8
Protein unfolding is essential for cleavage within the α-helix of a model protein substrate by the serine protease, thrombin.
Biochimie. 2016 Mar;122:227-34. doi: 10.1016/j.biochi.2015.09.021. Epub 2015 Sep 25.
9
Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6625-30. doi: 10.1073/pnas.1419895112. Epub 2015 May 4.
10
Proteolytic activity of Plasmodium falciparum subtilisin-like protease 3 on parasite profilin, a multifunctional protein.
Mol Biochem Parasitol. 2013 Oct;191(2):58-62. doi: 10.1016/j.molbiopara.2013.09.006. Epub 2013 Sep 27.

引用本文的文献

1
Recent advances in targeted degradation in the RAS pathway.
Future Med Chem. 2025 Mar;17(6):693-708. doi: 10.1080/17568919.2025.2476387. Epub 2025 Mar 10.
3
Ionizable lipid nanoparticles for RAS protease delivery to inhibit cancer cell proliferation.
J Control Release. 2024 Jun;370:614-625. doi: 10.1016/j.jconrel.2024.05.015. Epub 2024 May 14.
4
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
5
Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications.
BME Front. 2024 Jan 25;5:0035. doi: 10.34133/bmef.0035. eCollection 2024.
6
RAS degraders: The new frontier for RAS-driven cancers.
Mol Ther. 2023 Jul 5;31(7):1904-1919. doi: 10.1016/j.ymthe.2023.03.017. Epub 2023 Mar 21.
7
Design and characterization of a protein fold switching network.
Nat Commun. 2023 Jan 26;14(1):431. doi: 10.1038/s41467-023-36065-3.
8
Proteolytic pan-RAS Cleavage Leads to Tumor Regression in Patient-derived Pancreatic Cancer Xenografts.
Mol Cancer Ther. 2022 May 4;21(5):810-820. doi: 10.1158/1535-7163.MCT-21-0550.

本文引用的文献

1
An engineered chimeric toxin that cleaves activated mutant and wild-type RAS inhibits tumor growth.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16938-16948. doi: 10.1073/pnas.2000312117. Epub 2020 Jul 2.
2
Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
J Biol Chem. 2019 Jun 21;294(25):9937-9948. doi: 10.1074/jbc.RA119.008653. Epub 2019 May 14.
3
A KRAS GTPase K104Q Mutant Retains Downstream Signaling by Offsetting Defects in Regulation.
J Biol Chem. 2017 Mar 17;292(11):4446-4456. doi: 10.1074/jbc.M116.762435. Epub 2017 Jan 30.
5
6
Ras Conformational Ensembles, Allostery, and Signaling.
Chem Rev. 2016 Jun 8;116(11):6607-65. doi: 10.1021/acs.chemrev.5b00542. Epub 2016 Jan 27.
7
Absolute Quantification of Endogenous Ras Isoform Abundance.
PLoS One. 2015 Nov 11;10(11):e0142674. doi: 10.1371/journal.pone.0142674. eCollection 2015.
8
Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S.
PLoS One. 2015 Apr 22;10(4):e0123918. doi: 10.1371/journal.pone.0123918. eCollection 2015.
9
Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX.
Nat Struct Mol Biol. 2015 May;22(5):411-6. doi: 10.1038/nsmb.3012. Epub 2015 Apr 13.
10
Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD.
Structure. 2015 Mar 3;23(3):505-516. doi: 10.1016/j.str.2014.12.017. Epub 2015 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验