INRAE, Oniris, BIOEPAR, Nantes, France.
INRAE, EpiA, Theix, France.
Vet Res. 2021 Mar 6;52(1):40. doi: 10.1186/s13567-021-00902-4.
Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.
利用人工智能 (AI) 方法在动物健康 (AH) 中,可以解决高度复杂的问题,例如在定量和预测流行病学、动物/人类精准医学中遇到的问题,或研究宿主-病原体相互作用。AI 可能有助于:(i) 诊断和疾病病例检测;(ii) 更可靠的预测和减少错误;(iii) 更真实地表示复杂的生物系统,并使计算代码更易于非计算机科学家理解;(iv) 加快决策速度并提高风险分析的准确性;(v) 更好地进行有针对性的干预和预测负面效果。反过来,由于 AH 系统、数据、约束和分析目标的特殊性,AH 中的挑战可能会刺激 AI 研究。本研究基于 2009-2019 年期间在 AI 和 AH 接口的科学论文的文献综述,以及对处于该接口的法国研究人员的访谈,解释了当前各种 AI 方法在 AH 中被调动的主要领域,以及它如何有助于更新 AH 研究问题并消除方法或概念上的障碍。在介绍了可能的障碍和推动因素之后,我们提出了一些建议,以更好地把握 AH/AI 接口所代表的挑战。随着几个促进健康领域全球和多部门视角的新概念的发展,AI 应该有助于将 AH 中的不同学科分散到更具横向和综合的研究中。