Suppr超能文献

在可见光照下协同增强光催化性能的 1D/2D CdS-BiMoO 核壳异质结构的原位生长。

In situ growth of 1D/2D CdS-BiMoO core shell heterostructures for synergistic enhancement of photocatalytic performance under visible light.

机构信息

Department of Chemical and Biological Engineering, Gachon University, Seongnam-Daero, 1342, Seongnam-Si, Republic of Korea.

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.

出版信息

Chemosphere. 2021 Jul;275:130086. doi: 10.1016/j.chemosphere.2021.130086. Epub 2021 Feb 23.

Abstract

Stability of the photocatalyst, maximum solar energy harvesting and effective photogenerated charge carrier separation are yet demanding key features of the photocatalysis for pollutant abetment and photo-electrochemical applications. Herein, we report the in situ solvothermal synthesis of CdS-BiMoO core-shell heterostructures (CdS-BiMoO CSHs) for the photocatalytic elimination of methyl orange (MO) under visible light. The as-synthesized CdS-BiMoO CSHs exhibited highest photocatalytic performance of 98.5%, which is approximately 10 and 4 folds higher than pristine BiMoO nanosheets (NSs) and CdS nanorods (NRs), respectively. This significantly enhanced photocatalytic performance is attributed to the core-shell heterostructure that improves the visible-light harvesting ability, facilitates efficient separation and transfer of the photogenerated charge carriers, as well as synergistic band alignment of both CdS NRs and BiMoO NSs. The CdS-BiMoO CSHs also showed efficient photocatalytic performance toward methylene blue (MB) as colored dye and tetracycline hydrochloride (TCH) as a colorless emerging contaminant. Additionally, the outcomes of transient photocurrent, electrochemical impedance, and photoluminescence study further corroborate that the construction of core-shell heterostructures with tight contact, leading to effective charge carrier separation. The hole (h) and superoxide radical anion (O) were determined to be the predominant active species accountable for the MO dye degradation. Furthermore, the CdS-BiMoO CSHs exhibited a satisfactory recycling efficiency over five cycles (reduced by approximately 6%), owing to the protective BiMoO NSs shell over the CdS NRs core, demonstrating their applicability in wastewater purification and photo-electrochemical applications.

摘要

光催化剂的稳定性、最大的太阳能捕获以及有效的光生载流子分离仍然是光催化促进污染物去除和光电化学应用的关键特征。在此,我们报告了 CdS-BiMoO 核壳异质结构(CdS-BiMoO CSHs)的原位溶剂热合成,用于可见光下光催化消除甲基橙(MO)。所合成的 CdS-BiMoO CSHs 表现出最高的光催化性能,为 98.5%,分别约为原始 BiMoO 纳米片(NSs)和 CdS 纳米棒(NRs)的 10 倍和 4 倍。这种显著增强的光催化性能归因于核壳异质结构,该结构提高了可见光捕获能力,促进了光生载流子的有效分离和转移,以及 CdS NRs 和 BiMoO NSs 的协同能带排列。CdS-BiMoO CSHs 对亚甲基蓝(MB)作为有色染料和盐酸四环素(TCH)作为无色新兴污染物也表现出高效的光催化性能。此外,瞬态光电流、电化学阻抗和光致发光研究的结果进一步证实,构建具有紧密接触的核壳异质结构,导致有效载流子分离。确定空穴(h)和超氧自由基阴离子(O)是导致 MO 染料降解的主要活性物质。此外,CdS-BiMoO CSHs 在五个循环(约 6%的减少)中表现出令人满意的回收效率,这归因于 CdS NRs 核上保护性的 BiMoO NSs 壳,展示了它们在废水净化和光电化学应用中的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验