Suppr超能文献

在 Hybrid Swarm 作图群体中进行准确、超低覆盖度的基因组重建和关联研究。

Accurate, ultra-low coverage genome reconstruction and association studies in Hybrid Swarm mapping populations.

机构信息

Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.

Department of Biology, Stanford University, Stanford, CA 94305, USA.

出版信息

G3 (Bethesda). 2021 Apr 15;11(4). doi: 10.1093/g3journal/jkab062.

Abstract

Genetic association studies seek to uncover the link between genotype and phenotype, and often utilize inbred reference panels as a replicable source of genetic variation. However, inbred reference panels can differ substantially from wild populations in their genotypic distribution, patterns of linkage-disequilibrium, and nucleotide diversity. As a result, associations discovered using inbred reference panels may not reflect the genetic basis of phenotypic variation in natural populations. To address this problem, we evaluated a mapping population design where dozens to hundreds of inbred lines are outbred for few generations, which we call the Hybrid Swarm. The Hybrid Swarm approach has likely remained underutilized relative to pre-sequenced inbred lines due to the costs of genome-wide genotyping. To reduce sequencing costs and make the Hybrid Swarm approach feasible, we developed a computational pipeline that reconstructs accurate whole genomes from ultra-low-coverage (0.05X) sequence data in Hybrid Swarm populations derived from ancestors with phased haplotypes. We evaluate reconstructions using genetic variation from the Drosophila Genetic Reference Panel as well as variation from neutral simulations. We compared the power and precision of Genome-Wide Association Studies using the Hybrid Swarm, inbred lines, recombinant inbred lines (RILs), and highly outbred populations across a range of allele frequencies, effect sizes, and genetic architectures. Our simulations show that these different mapping panels vary in their power and precision, largely depending on the architecture of the trait. The Hybrid Swam and RILs outperform inbred lines for quantitative traits, but not for monogenic ones. Taken together, our results demonstrate the feasibility of the Hybrid Swarm as a cost-effective method of fine-scale genetic mapping.

摘要

遗传关联研究旨在揭示基因型与表型之间的联系,通常利用近交参考群体作为可重复的遗传变异来源。然而,近交参考群体在基因型分布、连锁不平衡模式和核苷酸多样性方面与野生种群有很大的不同。因此,使用近交参考群体发现的关联可能无法反映自然种群中表型变异的遗传基础。为了解决这个问题,我们评估了一种映射群体设计,其中数十到数百个近交系经过几代杂交,我们称之为杂交蜂群。相对于预先测序的近交系,杂交蜂群方法可能由于全基因组基因分型的成本而仍然未被充分利用。为了降低测序成本并使杂交蜂群方法可行,我们开发了一种计算管道,该管道可以从具有相位单倍型的祖先衍生的杂交蜂群群体的超低覆盖度(0.05X)序列数据中重建准确的全基因组。我们使用来自果蝇遗传参考面板的遗传变异以及中性模拟的变异来评估重建。我们比较了使用杂交蜂群、近交系、重组近交系(RIL)和高度杂交群体进行全基因组关联研究的功效和精度,跨越了一系列等位基因频率、效应大小和遗传结构。我们的模拟表明,这些不同的映射面板在功效和精度上存在差异,这主要取决于性状的结构。杂交蜂群和 RIL 在数量性状上优于近交系,但在单基因性状上则不然。总之,我们的结果表明杂交蜂群作为一种具有成本效益的精细遗传图谱方法是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/628f/8759814/a8ce2d6bd08a/jkab062f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验