Department of Radiation Oncology, Institut Godinot, Reims, France.
Department of Radiation Oncology, Centre François Baclesse, ARCHADE, Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN, France.
Cancer Radiother. 2021 Jul;25(5):447-456. doi: 10.1016/j.canrad.2021.02.002. Epub 2021 Mar 5.
Survival after whole brain radiation therapy (WBRT) in patients with multiple brain metastases (BM) is currently predicted by group-based scoring systems with limited usability for decision. We aimed to develop a more relevant individualized predictive model than Radiation Therapy Oncology Group - Recursive Partitioning Analysis (RTOG-RPA) and Diagnosis - Specific Graded Prognostic Assessment (DS-GPA) for patients with limited life-expectancy.
Based on a Discovery cohort of patients undergoing WBRT, multivariable piecewise Cox regression models with time cut-offs at 1 and 3 months were developed to predict overall survival (OS). A final parsimonious model was defined, and an external validation cohort was used to assess its discrimination and calibration at one, six, and 12 months.
In the 173-patient Discovery cohort, the majority of patients had primary lung cancer (56%), presence of extracranial disease (ECD) (75%), Eastern Cooperative Oncolgy Group - Performance Status (ECOG-PS) score 1 (41%) and no intracranial hypertension (ICH) (74%). Most patients were classified as the RPA class II (48%). The final piecewise Cox model was based on primary site, age, ECD, ECOG-PS and ICH. An external validation of the model was carried out using a cohort of 79 patients. Individualized survival estimates obtained with this model outperformed the RPA and DS-GPA scores for overall survival prediction at 1-month, 6-months and 12- months in both Discovery and Validation cohorts. A R/Shiny web application was developed to obtain individualized predictions for new patients, providing an easy-to-use tool for clinicians and researchers.
Our model provides individualized estimates of survival for poor prognosis patients undergoing WBRT, outperforming actual scoring systems.
目前,预测多发性脑转移瘤(BM)患者接受全脑放疗(WBRT)后生存时间的方法是基于分组评分系统,但这些系统的可用性有限。我们旨在为预期寿命有限的患者开发一种比放射治疗肿瘤学组-递归分区分析(RTOG-RPA)和诊断特异性分级预后评估(DS-GPA)更相关的个体化预测模型。
基于接受 WBRT 的患者的发现队列,采用具有 1 个月和 3 个月时间截止值的多变量分段 Cox 回归模型来预测总生存期(OS)。定义了一个最终的简化模型,并使用外部验证队列来评估其在 1、6 和 12 个月时的区分度和校准度。
在 173 例发现队列患者中,大多数患者患有原发性肺癌(56%)、存在颅外疾病(ECD)(75%)、东部合作肿瘤学组表现状态(ECOG-PS)评分 1(41%)和无颅内压升高(ICH)(74%)。大多数患者被归类为 RPA Ⅱ级(48%)。最终的分段 Cox 模型基于原发部位、年龄、ECD、ECOG-PS 和 ICH。使用 79 例患者的队列对模型进行了外部验证。在发现队列和验证队列中,使用该模型获得的个体化生存估计在 1 个月、6 个月和 12 个月时对总体生存预测的效果均优于 RPA 和 DS-GPA 评分。开发了一个 R/Shiny 网络应用程序,用于为新患者获得个体化预测,为临床医生和研究人员提供了一个易于使用的工具。
我们的模型为接受 WBRT 的预后不良患者提供了个体化的生存估计,优于实际的评分系统。