Suppr超能文献

一种新模型在预测全脑放疗后脑转移患者的个体化生存方面优于 RPA 和 DS-GPA 评分。

A new model outperforming RPA and DS-GPA scores for individualized survival prediction of patients following whole brain irradiation for brain metastasis.

机构信息

Department of Radiation Oncology, Institut Godinot, Reims, France.

Department of Radiation Oncology, Centre François Baclesse, ARCHADE, Caen, France; Laboratoire de physique corpusculaire IN2P3/ENSICAEN, France.

出版信息

Cancer Radiother. 2021 Jul;25(5):447-456. doi: 10.1016/j.canrad.2021.02.002. Epub 2021 Mar 5.

Abstract

PURPOSE

Survival after whole brain radiation therapy (WBRT) in patients with multiple brain metastases (BM) is currently predicted by group-based scoring systems with limited usability for decision. We aimed to develop a more relevant individualized predictive model than Radiation Therapy Oncology Group - Recursive Partitioning Analysis (RTOG-RPA) and Diagnosis - Specific Graded Prognostic Assessment (DS-GPA) for patients with limited life-expectancy.

METHODS

Based on a Discovery cohort of patients undergoing WBRT, multivariable piecewise Cox regression models with time cut-offs at 1 and 3 months were developed to predict overall survival (OS). A final parsimonious model was defined, and an external validation cohort was used to assess its discrimination and calibration at one, six, and 12 months.

RESULTS

In the 173-patient Discovery cohort, the majority of patients had primary lung cancer (56%), presence of extracranial disease (ECD) (75%), Eastern Cooperative Oncolgy Group - Performance Status (ECOG-PS) score 1 (41%) and no intracranial hypertension (ICH) (74%). Most patients were classified as the RPA class II (48%). The final piecewise Cox model was based on primary site, age, ECD, ECOG-PS and ICH. An external validation of the model was carried out using a cohort of 79 patients. Individualized survival estimates obtained with this model outperformed the RPA and DS-GPA scores for overall survival prediction at 1-month, 6-months and 12- months in both Discovery and Validation cohorts. A R/Shiny web application was developed to obtain individualized predictions for new patients, providing an easy-to-use tool for clinicians and researchers.

CONCLUSION

Our model provides individualized estimates of survival for poor prognosis patients undergoing WBRT, outperforming actual scoring systems.

摘要

目的

目前,预测多发性脑转移瘤(BM)患者接受全脑放疗(WBRT)后生存时间的方法是基于分组评分系统,但这些系统的可用性有限。我们旨在为预期寿命有限的患者开发一种比放射治疗肿瘤学组-递归分区分析(RTOG-RPA)和诊断特异性分级预后评估(DS-GPA)更相关的个体化预测模型。

方法

基于接受 WBRT 的患者的发现队列,采用具有 1 个月和 3 个月时间截止值的多变量分段 Cox 回归模型来预测总生存期(OS)。定义了一个最终的简化模型,并使用外部验证队列来评估其在 1、6 和 12 个月时的区分度和校准度。

结果

在 173 例发现队列患者中,大多数患者患有原发性肺癌(56%)、存在颅外疾病(ECD)(75%)、东部合作肿瘤学组表现状态(ECOG-PS)评分 1(41%)和无颅内压升高(ICH)(74%)。大多数患者被归类为 RPA Ⅱ级(48%)。最终的分段 Cox 模型基于原发部位、年龄、ECD、ECOG-PS 和 ICH。使用 79 例患者的队列对模型进行了外部验证。在发现队列和验证队列中,使用该模型获得的个体化生存估计在 1 个月、6 个月和 12 个月时对总体生存预测的效果均优于 RPA 和 DS-GPA 评分。开发了一个 R/Shiny 网络应用程序,用于为新患者获得个体化预测,为临床医生和研究人员提供了一个易于使用的工具。

结论

我们的模型为接受 WBRT 的预后不良患者提供了个体化的生存估计,优于实际的评分系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验