Tuygun Cansu, İpek Bahar
Department of Chemical Engineering, Faculty of Engineering, Middle East Technical University, Ankara Turkey.
Turk J Chem. 2021 Feb 17;45(1):231-247. doi: 10.3906/kim-2009-66. eCollection 2021.
CO valorization through chemical reactions attracts significant attention due to the mitigation of greenhouse gas effects. This article covers the catalytic hydrogenation of CO to methanol and dimethyl ether using Cu-Ho-Ga containing ZSM-5 and g-AlO at atmospheric pressure and at temperatures of 210 °C and 260 °C using a CO:H feed ratio of 1:3 and 1:9. In addition, the thermodynamic limitations of methanol and DME formation from CO was investigated at a temperature range of 100-400 °C. Cu-Ho-Ga/g-AlO catalyst shows the highest formation rate of methanol (90.3 µmol/g/h ) and DME (13.2 µmol/g/h) as well as the highest selectivity towards methanol and DME (39.9 %) at 210 °C using a CO:H 1:9 feed ratio. In both the thermodynamic analysis and reaction results, the higher concentration of H in the feed and lower reaction temperature resulted in higher DME selectivity and lower CO production rates.
通过化学反应实现一氧化碳(CO)的增值由于能够减轻温室气体效应而备受关注。本文涵盖了在大气压下,使用含铜-钬-镓的ZSM-5和γ-氧化铝,在210℃和260℃的温度下,以1:3和1:9的CO:H进料比将CO催化氢化为甲醇和二甲醚。此外,还研究了在100-400℃的温度范围内由CO生成甲醇和二甲醚的热力学限制。在210℃下使用1:9的CO:H进料比时,铜-钬-镓/γ-氧化铝催化剂显示出最高的甲醇生成速率(90.3微摩尔/克/小时)和二甲醚生成速率(13.2微摩尔/克/小时),以及对甲醇和二甲醚的最高选择性(39.9%)。在热力学分析和反应结果中,进料中较高的氢气浓度和较低的反应温度导致了较高的二甲醚选择性和较低的CO生成速率。