Suppr超能文献

新冠概念:迈向对接近追踪服务中的隐私目标及所宣称的保护进行形式化定义和有记录的理解。

Covid notions: Towards formal definitions - and documented understanding - of privacy goals and claimed protection in proximity-tracing services.

作者信息

Kuhn Christiane, Beck Martin, Strufe Thorsten

机构信息

Karlsruhe Institute of Technology, Huawei, Germany.

出版信息

Online Soc Netw Media. 2021 Mar;22:100125. doi: 10.1016/j.osnem.2021.100125. Epub 2021 Feb 27.

Abstract

The recent SARS-CoV-2 pandemic gave rise to management approaches using mobile apps for contact tracing. The corresponding apps track individuals and their interactions, to facilitate alerting users of potential infections well before they become infectious themselves. Naïve implementation obviously jeopardizes the privacy of health conditions, location, activities, and social interaction of its users. A number of protocol designs for colocation tracking have already been developed, most of which claim to function in a privacy preserving manner. However, despite claims such as "GDPR compliance", "anonymity", "pseudonymity" or other forms of "privacy", the authors of these designs usually neglect to precisely define what they (aim to) protect. We make a first step towards formally defining the privacy notions of proximity tracing services, especially with regards to the health, (co-)location, and social interaction of their users. We also give a high-level intuition of which protection the most prominent proposals likely can and cannot achieve. This initial overview indicates that all proposals include some centralized services, and none protects identity and (co-)locations of infected users perfectly from both other users and the service provider.

摘要

近期的新冠疫情引发了利用移动应用程序进行接触者追踪的管理方法。相应的应用程序追踪个人及其互动情况,以便在用户自身具有传染性之前很久就提醒他们可能受到感染。简单的实施方式显然会危及用户健康状况、位置、活动和社交互动的隐私。已经开发了许多用于位置追踪的协议设计,其中大多数声称以保护隐私的方式运行。然而,尽管有诸如“符合通用数据保护条例”“匿名”“假名”或其他形式的“隐私”等说法,但这些设计的作者通常忽略了精确界定他们(旨在)保护的内容。我们朝着正式定义近距离追踪服务的隐私概念迈出了第一步,特别是关于其用户的健康、(共同)位置和社交互动方面。我们还对最突出的提议可能能够实现和无法实现的保护措施给出了高层次的直观理解。这一初步概述表明,所有提议都包含一些集中式服务,而且没有一个能完美保护感染用户的身份和(共同)位置不被其他用户和服务提供商知晓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9335/7910700/6e7aaf695c0b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验