Suppr超能文献

谁获得许可证:静止细胞重新进入细胞周期时的 DNA 合成。

Who gets a license: DNA synthesis in quiescent cells re-entering the cell cycle.

机构信息

Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.

出版信息

Curr Genet. 2021 Aug;67(4):539-543. doi: 10.1007/s00294-021-01170-7. Epub 2021 Mar 8.

Abstract

The precise regulation of the entry into S phase is critical for preventing genome instability. The first step in the initiation of eukaryotic DNA synthesis occurs in G1 phase cells and involves the loading of the conserved MCM helicase onto multiple origins of replication in a process known as origin licensing. In proliferating metazoan cells, an origin-licensing checkpoint delays initiation until high levels of MCM loading occur, with excess origins being licensed. One function of this checkpoint is to ensure that S phase can be completed in the face of replication stress by activation of dormant MCM bound origins. However, when both metazoan and yeast cells enter S phase from quiescence or G0 phase, a non-growing but reversible cell cycle state, origins are significantly under-licensed. In metazoan cells, under-licensing is the result of a compromised origin-licensing checkpoint. In budding yeast, our study has revealed that under-licensing can be attributed to the chromatin structure at a class of origins that is inhibitory to the binding of MCM. Thus, defects in multiple pathways may contribute to the failure to fully license origins in quiescent cells re-entering the cell cycle, thereby promoting a higher risk of genome instability.

摘要

精确调控 S 期进入对于防止基因组不稳定性至关重要。真核生物 DNA 合成起始的第一步发生在 G1 期细胞中,涉及将保守的 MCM 解旋酶加载到多个复制起始点上,这一过程称为起始许可。在增殖的后生动物细胞中,起始许可检查点延迟起始,直到 MCM 加载达到高水平,多余的起始点被许可。该检查点的一个功能是通过激活休眠的 MCM 结合起始点来确保在复制应激下完成 S 期。然而,当后生动物和酵母细胞从静止或 G0 期进入 S 期时,细胞处于非生长但可逆转的细胞周期状态,起始点的许可显著不足。在后生动物细胞中,许可不足是起始许可检查点受损的结果。在芽殖酵母中,我们的研究表明,许可不足可归因于一类起始点的染色质结构,该结构抑制了 MCM 的结合。因此,多个途径的缺陷可能导致静止细胞重新进入细胞周期时不能完全许可起始点,从而增加基因组不稳定性的风险。

相似文献

1
Who gets a license: DNA synthesis in quiescent cells re-entering the cell cycle.
Curr Genet. 2021 Aug;67(4):539-543. doi: 10.1007/s00294-021-01170-7. Epub 2021 Mar 8.
2
Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence.
J Cell Biol. 2019 Jul 1;218(7):2169-2184. doi: 10.1083/jcb.201902143. Epub 2019 Jun 11.
3
Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
Nucleic Acids Res. 2021 Jan 25;49(2):864-878. doi: 10.1093/nar/gkaa1148.
4
The consequences of differential origin licensing dynamics in distinct chromatin environments.
Nucleic Acids Res. 2022 Sep 23;50(17):9601-9620. doi: 10.1093/nar/gkac003.
5
Efficiency and equity in origin licensing to ensure complete DNA replication.
Biochem Soc Trans. 2021 Nov 1;49(5):2133-2141. doi: 10.1042/BST20210161.
6
Pioneer factors for DNA replication initiation in metazoans.
Bioessays. 2024 Sep;46(9):e2400002. doi: 10.1002/bies.202400002. Epub 2024 Jun 16.
7
Behavior of replication origins in Eukaryota - spatio-temporal dynamics of licensing and firing.
Cell Cycle. 2015;14(14):2251-64. doi: 10.1080/15384101.2015.1056421. Epub 2015 Jun 1.
8
Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
Genome Res. 2017 Feb;27(2):269-277. doi: 10.1101/gr.209940.116. Epub 2016 Nov 28.
9
Distinct and sequential re-replication barriers ensure precise genome duplication.
PLoS Genet. 2020 Aug 25;16(8):e1008988. doi: 10.1371/journal.pgen.1008988. eCollection 2020 Aug.
10
A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast.
PLoS Genet. 2013;9(9):e1003798. doi: 10.1371/journal.pgen.1003798. Epub 2013 Sep 12.

引用本文的文献

1
DNA replication: Mechanisms and therapeutic interventions for diseases.
MedComm (2020). 2023 Feb 5;4(1):e210. doi: 10.1002/mco2.210. eCollection 2023 Feb.
2
Disruption of Toxoplasma gondii-Induced Host Cell DNA Replication Is Dependent on Contact Inhibition and Host Cell Type.
mSphere. 2022 Jun 29;7(3):e0016022. doi: 10.1128/msphere.00160-22. Epub 2022 May 19.

本文引用的文献

1
Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
Nucleic Acids Res. 2021 Jan 25;49(2):864-878. doi: 10.1093/nar/gkaa1148.
2
Defects in the origin licensing checkpoint stresses cells exiting G0.
J Cell Biol. 2019 Jul 1;218(7):2080-2081. doi: 10.1083/jcb.201905181. Epub 2019 Jun 11.
3
Intrinsic checkpoint deficiency during cell cycle re-entry from quiescence.
J Cell Biol. 2019 Jul 1;218(7):2169-2184. doi: 10.1083/jcb.201902143. Epub 2019 Jun 11.
5
Condensin-Dependent Chromatin Compaction Represses Transcription Globally during Quiescence.
Mol Cell. 2019 Feb 7;73(3):533-546.e4. doi: 10.1016/j.molcel.2018.11.020. Epub 2018 Dec 27.
6
Lgr5 intestinal stem cells reside in an unlicensed G phase.
J Cell Biol. 2018 May 7;217(5):1667-1685. doi: 10.1083/jcb.201708023. Epub 2018 Mar 29.
7
Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA.
PLoS Genet. 2017 Aug 14;13(8):e1006958. doi: 10.1371/journal.pgen.1006958. eCollection 2017 Aug.
8
Mechanisms and regulation of DNA replication initiation in eukaryotes.
Crit Rev Biochem Mol Biol. 2017 Apr;52(2):107-144. doi: 10.1080/10409238.2016.1274717. Epub 2017 Jan 17.
9
How MCM loading and spreading specify eukaryotic DNA replication initiation sites.
F1000Res. 2016 Aug 24;5. doi: 10.12688/f1000research.9008.1. eCollection 2016.
10
Chromosome Duplication in Saccharomyces cerevisiae.
Genetics. 2016 Jul;203(3):1027-67. doi: 10.1534/genetics.115.186452.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验