Suppr超能文献

微小染色体维持蛋白(MCM)的装载与扩散如何确定真核生物DNA复制起始位点。

How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

作者信息

Hyrien Olivier

机构信息

Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Superieure, PSL Research University, Paris, France.

出版信息

F1000Res. 2016 Aug 24;5. doi: 10.12688/f1000research.9008.1. eCollection 2016.

Abstract

DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

摘要

真核生物的物种和细胞类型之间,DNA复制起点存在显著差异。在芽殖酵母中,复制起点定位明确且效率很高;在早期果蝇和蛙胚胎中,复制起点随机分布,这些胚胎并不转录其基因组;在哺乳动物细胞中,复制起点则聚集在宽泛的(10 - 100 kb)非转录区域,常常毗邻转录基因。尽管如此,在所有情况下,复制起点都是在细胞周期的G1期通过加载Mcm 2 - 7蛋白的双六聚体(MCM DHs)而建立的,MCM DHs是复制解旋酶的核心。S期MCM DHs的激活会导致复制起点解旋、聚合酶招募以及双向DNA合成的起始。虽然MCM DHs最初加载在由起点识别复合物(ORC)结合所定义的位点,但它们最终结合染色质的数量比ORC多得多,并且在任何一个S期只有一小部分被激活。数据表明,MCM DHs的多样性和功能冗余为复制过程提供了稳健性,并影响复制时间,而且MCM DHs可以沿着DNA滑动并在ORC周围远距离扩散。最近的研究进一步表明,MCM DHs会因与转录复合物碰撞而沿DNA移位,但移位后仍具有起始功能。因此,真核生物的DNA复制依赖于本质上可移动且灵活的复制起点,这一策略与细菌根本不同,但从酵母到人类都是保守的。MCM DHs的这些特性可能有助于在高等真核生物中建立宽泛的基因间复制起始区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b452/5007759/d58cc41f4d07/f1000research-5-9691-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验