Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
Scientific Instruments Center, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
J Cell Physiol. 2021 Oct;236(10):6932-6947. doi: 10.1002/jcp.30354. Epub 2021 Mar 8.
Autophagy, an evolutionarily conserved lysosomal degradation pathway, is known to regulate a variety of physiological and pathological processes. At present, the function and the precise mechanism of autophagy regulation in kidney and renal cells remain elusive. Here, we explored the role of ERK1 and ERK2 (referred as ERK1/2 hereafter) in autophagy regulation in renal cells in response to hypoglycemia. Glucose starvation potently and transiently activated ERK1/2 in renal cells, and this was concomitant with an increase in autophagic flux. Perturbing ERK1/2 activation by treatment with inhibitors of RAF or MEK1/2, via the expression of a dominant-negative mutant form of MEK1/2 or RAS, blocked hypoglycemia-mediated ERK1/2 activation and autophagy induction in renal cells. Glucose starvation also induced the accumulation of reactive oxygen species in renal cells, which was involved in the activation of the ERK1/2 cascade and the induction of autophagy in renal cells. Interestingly, ATG13 and FIP200, the members of the ULK1 complex, contain the ERK consensus phosphorylation sites, and glucose starvation induced an association between ATG13 or FIP200 and ERK1/2. Moreover, the expression of the phospho-defective mutants of ATG13 and FIP200 in renal cells blocked glucose starvation-induced autophagy and rendered cells more susceptible to hypoglycemia-induced cell death. However, the expression of the phospho-mimic mutants of ATG13 and FIP200 induced autophagy and protected renal cells from hypoglycemia-induced cell death. Taken together, our results demonstrate that hypoglycemia activates the ERK1/2 signaling to regulate ATG13 and FIP200, thereby stimulating autophagy to protect the renal cells from hypoglycemia-induced cell death.
自噬是一种进化上保守的溶酶体降解途径,已知其可调节多种生理和病理过程。目前,自噬在肾脏和肾细胞中的功能和确切调节机制仍不清楚。在这里,我们研究了 ERK1 和 ERK2(以下简称 ERK1/2)在肾细胞应对低血糖时调节自噬的作用。葡萄糖饥饿强烈且短暂地激活了肾细胞中的 ERK1/2,同时增加了自噬通量。通过用 RAF 或 MEK1/2 的抑制剂处理、表达 MEK1/2 的显性负突变体或 RAS 来干扰 ERK1/2 的激活,阻断了低血糖介导的 ERK1/2 激活和肾细胞中的自噬诱导。葡萄糖饥饿还诱导了肾细胞中活性氧的积累,这涉及 ERK1/2 级联的激活和肾细胞中自噬的诱导。有趣的是,ULK1 复合物的成员 ATG13 和 FIP200 含有 ERK 共有磷酸化位点,葡萄糖饥饿诱导 ATG13 或 FIP200 与 ERK1/2 结合。此外,肾细胞中 ATG13 和 FIP200 的磷酸化缺陷突变体的表达阻断了葡萄糖饥饿诱导的自噬,并使细胞对低血糖诱导的细胞死亡更敏感。然而,ATG13 和 FIP200 的磷酸化模拟突变体的表达诱导了自噬,并保护肾细胞免受低血糖诱导的细胞死亡。总之,我们的结果表明,低血糖激活 ERK1/2 信号通路来调节 ATG13 和 FIP200,从而刺激自噬来保护肾细胞免受低血糖诱导的细胞死亡。