Suppr超能文献

基于惩罚对数和网络的逻辑回归模型进行癌症分类和生物标志物选择。

Cancer classification and biomarker selection via a penalized logsum network-based logistic regression model.

机构信息

Faculty of Information Technology, Macau University of Science and Technology, Macau, China.

Shaoguan University, Shaoguan, Guangdong, China.

出版信息

Technol Health Care. 2021;29(S1):287-295. doi: 10.3233/THC-218026.

Abstract

BACKGROUND

In genome research, it is particularly important to identify molecular biomarkers or signaling pathways related to phenotypes. Logistic regression model is a powerful discrimination method that can offer a clear statistical explanation and obtain the classification probability of classification label information. However, it is unable to fulfill biomarker selection.

OBJECTIVE

The aim of this paper is to give the model efficient gene selection capability.

METHODS

In this paper, we propose a new penalized logsum network-based regularization logistic regression model for gene selection and cancer classification.

RESULTS

Experimental results on simulated data sets show that our method is effective in the analysis of high-dimensional data. For a large data set, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC performances, which are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods.

CONCLUSIONS

The proposed method can be considered a promising tool for gene selection and cancer classification of high-dimensional biological data.

摘要

背景

在基因组研究中,识别与表型相关的分子生物标志物或信号通路尤为重要。逻辑回归模型是一种强大的判别方法,可提供清晰的统计解释,并获得分类标签信息的分类概率。但是,它无法完成生物标志物的选择。

目的

本文旨在赋予模型有效的基因选择能力。

方法

本文提出了一种新的基于惩罚对数和网络的正则化逻辑回归模型,用于基因选择和癌症分类。

结果

在模拟数据集上的实验结果表明,我们的方法在分析高维数据方面是有效的。对于大数据集,所提出的方法在训练和测试中的 AUC 性能分别达到了 89.66%和 90.02%,平均比主流方法好 5.17%和 4.49%。

结论

该方法可被视为高维生物数据基因选择和癌症分类的一种有前途的工具。

相似文献

3
Sparse logistic regression with a L1/2 penalty for gene selection in cancer classification.
BMC Bioinformatics. 2013 Jun 19;14:198. doi: 10.1186/1471-2105-14-198.
5
A Novel Adaptive Penalized Logistic Regression for Uncovering Biomarker Associated with Anti-Cancer Drug Sensitivity.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Jul-Aug;14(4):771-782. doi: 10.1109/TCBB.2016.2561937. Epub 2016 May 3.
6
Model selection based on combined penalties for biomarker identification.
J Biopharm Stat. 2018;28(4):735-749. doi: 10.1080/10543406.2017.1378662. Epub 2017 Oct 26.
7
Network-based logistic regression integration method for biomarker identification.
BMC Syst Biol. 2018 Dec 31;12(Suppl 9):135. doi: 10.1186/s12918-018-0657-8.
8
Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization.
PLoS One. 2016 May 2;11(5):e0149675. doi: 10.1371/journal.pone.0149675. eCollection 2016.
9
Descriptor Selection Improvements for Quantitative Structure-Activity Relationships.
Int J Neural Syst. 2019 Nov;29(9):1950016. doi: 10.1142/S0129065719500163. Epub 2019 May 12.
10
Penalized logistic regression based on L1/2 penalty for high-dimensional DNA methylation data.
Technol Health Care. 2020;28(S1):161-171. doi: 10.3233/THC-209016.

引用本文的文献

1
Clinical prediction of pathological complete response in breast cancer: a machine learning study.
BMC Cancer. 2025 May 23;25(1):933. doi: 10.1186/s12885-025-14335-1.
4
Prediction Model of Ocular Metastases in Gastric Adenocarcinoma: Machine Learning-Based Development and Interpretation Study.
Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338231219352. doi: 10.1177/15330338231219352.
5
Exploration of novel biomarkers in Alzheimer's disease based on four diagnostic models.
Front Aging Neurosci. 2023 Feb 16;15:1079433. doi: 10.3389/fnagi.2023.1079433. eCollection 2023.
8
Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD).
Biochem Soc Trans. 2022 Feb 28;50(1):241-252. doi: 10.1042/BST20211240.

本文引用的文献

2
A Novel Cox Proportional Hazards Model for High-Dimensional Genomic Data in Cancer Prognosis.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1821-1830. doi: 10.1109/TCBB.2019.2961667. Epub 2021 Oct 7.
3
Descriptor Selection Improvements for Quantitative Structure-Activity Relationships.
Int J Neural Syst. 2019 Nov;29(9):1950016. doi: 10.1142/S0129065719500163. Epub 2019 May 12.
4
Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis.
Genet Epidemiol. 2019 Apr;43(3):276-291. doi: 10.1002/gepi.22194. Epub 2019 Feb 11.
5
Hybrid L method for gene selection in the Cox proportional hazards model.
Comput Methods Programs Biomed. 2018 Oct;164:65-73. doi: 10.1016/j.cmpb.2018.06.004. Epub 2018 Jun 27.
7
Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization.
PLoS One. 2016 May 2;11(5):e0149675. doi: 10.1371/journal.pone.0149675. eCollection 2016.
8
Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data.
Bioinformatics. 2016 Jun 1;32(11):1724-32. doi: 10.1093/bioinformatics/btw059. Epub 2016 Feb 1.
10
Novel harmonic regularization approach for variable selection in Cox's proportional hazards model.
Comput Math Methods Med. 2014;2014:857398. doi: 10.1155/2014/857398. Epub 2014 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验