Suppr超能文献

基于惩罚对数和网络的逻辑回归模型进行癌症分类和生物标志物选择。

Cancer classification and biomarker selection via a penalized logsum network-based logistic regression model.

机构信息

Faculty of Information Technology, Macau University of Science and Technology, Macau, China.

Shaoguan University, Shaoguan, Guangdong, China.

出版信息

Technol Health Care. 2021;29(S1):287-295. doi: 10.3233/THC-218026.

Abstract

BACKGROUND

In genome research, it is particularly important to identify molecular biomarkers or signaling pathways related to phenotypes. Logistic regression model is a powerful discrimination method that can offer a clear statistical explanation and obtain the classification probability of classification label information. However, it is unable to fulfill biomarker selection.

OBJECTIVE

The aim of this paper is to give the model efficient gene selection capability.

METHODS

In this paper, we propose a new penalized logsum network-based regularization logistic regression model for gene selection and cancer classification.

RESULTS

Experimental results on simulated data sets show that our method is effective in the analysis of high-dimensional data. For a large data set, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC performances, which are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods.

CONCLUSIONS

The proposed method can be considered a promising tool for gene selection and cancer classification of high-dimensional biological data.

摘要

背景

在基因组研究中,识别与表型相关的分子生物标志物或信号通路尤为重要。逻辑回归模型是一种强大的判别方法,可提供清晰的统计解释,并获得分类标签信息的分类概率。但是,它无法完成生物标志物的选择。

目的

本文旨在赋予模型有效的基因选择能力。

方法

本文提出了一种新的基于惩罚对数和网络的正则化逻辑回归模型,用于基因选择和癌症分类。

结果

在模拟数据集上的实验结果表明,我们的方法在分析高维数据方面是有效的。对于大数据集,所提出的方法在训练和测试中的 AUC 性能分别达到了 89.66%和 90.02%,平均比主流方法好 5.17%和 4.49%。

结论

该方法可被视为高维生物数据基因选择和癌症分类的一种有前途的工具。

相似文献

6
Model selection based on combined penalties for biomarker identification.基于联合惩罚的生物标志物识别模型选择
J Biopharm Stat. 2018;28(4):735-749. doi: 10.1080/10543406.2017.1378662. Epub 2017 Oct 26.
9
Descriptor Selection Improvements for Quantitative Structure-Activity Relationships.描述符选择对定量构效关系的改进。
Int J Neural Syst. 2019 Nov;29(9):1950016. doi: 10.1142/S0129065719500163. Epub 2019 May 12.

引用本文的文献

本文引用的文献

2
A Novel Cox Proportional Hazards Model for High-Dimensional Genomic Data in Cancer Prognosis.用于癌症预后的高维基因组数据的新型 Cox 比例风险模型。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1821-1830. doi: 10.1109/TCBB.2019.2961667. Epub 2021 Oct 7.
3
Descriptor Selection Improvements for Quantitative Structure-Activity Relationships.描述符选择对定量构效关系的改进。
Int J Neural Syst. 2019 Nov;29(9):1950016. doi: 10.1142/S0129065719500163. Epub 2019 May 12.
5
Hybrid L method for gene selection in the Cox proportional hazards model.混合 L 方法在 Cox 比例风险模型中的基因选择。
Comput Methods Programs Biomed. 2018 Oct;164:65-73. doi: 10.1016/j.cmpb.2018.06.004. Epub 2018 Jun 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验