Department of Chemistry, Sevadal Mahila Mahavidhyalaya, Nagpur, India.
Department of Physics, Sant Gadge Maharaj Mahavidyalaya, Hingna, Nagpur, India.
Luminescence. 2021 Aug;36(5):1159-1171. doi: 10.1002/bio.4041. Epub 2021 Apr 7.
In present work, KNa(SO ) phosphors doped with different concentrations of rare earth Eu , Sm and Dy ions (0.05, 0.1, 0.3, 0.5, 0.7, 1 mol%) were synthesized using a solid-state diffusion technique. Photoluminescence (PL) investigations were carried out for the whole range of Eu , Sm and Dy -doped phosphors; rare earth ions that retained maximum PL intensity were selected for advanced anionic exchange. In the present investigation, phosphors KNa(SO ):Eu (1 mol%), KNa(SO ):Dy (0.5 mol%) and KNa(SO ):Sm (0.3 mol%) had the highest PL intensity, and were therefore selected for further anionic substitution of sulphate anions with different concentrations of vanadate, phosphate, and tungstate anions, such as KNa(SO ) (MO ) : W (where W = Eu 1 mol%, Dy 0.5 mol% and Sm 0.3 mol%; MO = PO , VO , WO ; and x = 0.1, 0.3, 0.5, 0.7, 1). Structural and molecular environments of the substituted phosphors were characterized individually using X-ray diffraction and Fourier transform infrared spectroscopy. In-depth morphological investigations of the prepared phosphors were undertaken using scanning electron microscopy. For the principal investigation on enhancement of white light-emitting diode (w-LED) performance, the PL properties of all the synthesized phosphors were studied analytically. Emission intensity ratios for KNa(SO ):Eu 1 mol%, KNa(SO ) (PO ) :Eu 1 mol%, KNa(SO ) (VO ) :Eu 1 mol%, and KNa(SO ) (WO ) :Eu 1 mol% were 1:1.15:1.23:0.08. PL intensity ratios for the phosphors KNaSO :Dy 0.5 mol% and KNa(SO ) (PO )0.1:Dy 0.5 mol% was 1:2. The ratio of PL intensity was 1:3.2:0.8 for KNa(SO ):Sm 1 mol%, KNa(SO ) (PO4) :Sm 0.3 mol%, and KNa(SO ) (VO ) :Sm 0.3 mol% phosphors, respectively. Chromaticity investigations were carried out using Commission Internationale de l'Éclairage colour co-ordinate diagrams, which suggested that the prepared Eu -doped and Sm -doped phosphors would be prospective candidates for red and green LEDs, respectively, whereas Dy -doped phosphors showed emission in the blue and yellow regions. The entire study indicated that amalgamation of anionic exchange at a KNaSO phosphor activated with Eu , Dy and Sm rare earth ions could generate and enhance white light emission.
在目前的工作中,使用固态扩散技术合成了不同浓度的稀土 Eu 、Sm 和 Dy 离子(0.05、0.1、0.3、0.5、0.7、1 mol%)掺杂的 KNa(SO )荧光粉。对整个 Eu 、Sm 和 Dy 掺杂荧光粉系列进行了光致发光(PL)研究;选择保留最大 PL 强度的稀土离子进行高级阴离子交换。在本研究中,KNa(SO ):Eu(1 mol%)、KNa(SO ):Dy(0.5 mol%)和 KNa(SO ):Sm(0.3 mol%)的磷光体具有最高的 PL 强度,因此被选择用于进一步用不同浓度的钒酸盐、磷酸盐和钨酸盐阴离子对硫酸盐阴离子进行阴离子取代,例如 KNa(SO )(MO ):W(其中 W = Eu 1 mol%、Dy 0.5 mol%和 Sm 0.3 mol%;MO = PO 、VO 、WO ;和 x = 0.1、0.3、0.5、0.7、1)。使用 X 射线衍射和傅里叶变换红外光谱单独对取代荧光粉的结构和分子环境进行了表征。使用扫描电子显微镜对制备的荧光粉进行了深入的形态研究。为了对增强白光发光二极管(w-LED)性能进行深入研究,对所有合成荧光粉的 PL 特性进行了分析研究。KNa(SO ):Eu 1 mol%、KNa(SO )(PO ):Eu 1 mol%、KNa(SO )(VO ):Eu 1 mol%和 KNa(SO )(WO ):Eu 1 mol%的发射强度比为 1:1.15:1.23:0.08。KNaSO:Dy 0.5 mol%和 KNa(SO )(PO ):Dy 0.5 mol%的磷光体的 PL 强度比为 1:2。KNa(SO ):Sm 1 mol%、KNa(SO )(PO ):Sm 0.3 mol%和 KNa(SO )(VO ):Sm 0.3 mol%磷光体的 PL 强度比分别为 1:3.2:0.8。使用国际照明委员会色坐标图进行色度研究,表明制备的 Eu 掺杂和 Sm 掺杂荧光粉将分别成为红色和绿色 LED 的有前途的候选者,而 Dy 掺杂的磷光体在蓝色和黄色区域显示出发射。整个研究表明,在 Eu 、Dy 和 Sm 稀土离子激活的 KNaSO 荧光粉上进行阴离子交换的结合可以产生和增强白光发射。