Suppr超能文献

基于 PEG/dextran、PEG/Ficoll 和 PEG/硫酸盐双水相体系的脂质体稳定的全水乳液的形成和性质。

Formation and properties of liposome-stabilized all-aqueous emulsions based on PEG/dextran, PEG/Ficoll, and PEG/sulfate aqueous biphasic systems.

机构信息

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Soft Matter. 2021 Apr 7;17(13):3688-3699. doi: 10.1039/d0sm01849j. Epub 2021 Mar 8.

Abstract

Vesicle-stabilized all-aqueous emulsion droplets are appealing as bioreactors because they provide uniform encapsulation via equilibrium partitioning without restricting diffusion in and out of the interior. These properties rely on the composition of the aqueous two-phase system (ATPS) chosen for the emulsion and the structure of the interfacial liposome layer, respectively. Here, we explore how changing the aqueous two-phase system from a standard poly(ethyleneglycol), PEG, 8 kDa/dextran 10 kDa ATPS to PEG 8 kDa/Ficoll 70 kDa or PEG 8 kDa/NaSO systems impacts droplet uniformity and partitioning of a model solute (U15 oligoRNA). We also compare liposomes formed by two different methods, both of which begin with multilamellar, polydisperse vesicles formed by gentle hydration: (1) extrusion, which produced vesicles of 150 nm average diameter, and (2) vortexing, which produced vesicles of 270 nm average diameter. Our data illustrate that while droplet uniformity and stability are somewhat better for samples based on extruded vesicles, extrusion is not necessary to create functional microreactors, as emulsions stabilized with vortexed liposomes are just as effective at solute partitioning and allow diffusion across the droplet's liposome corona. This work expands the compositions possible for liposome-stabilized, all-aqueous emulsion droplet bioreactors, making them amenable to a wider range of potential reactions. Replacing the liposome extrusion step with vortexing can reduce time and cost of bioreactor production with only modest reductions in emulsion quality.

摘要

囊泡稳定的全水乳液滴作为生物反应器很有吸引力,因为它们通过平衡分配均匀地包裹物质,而不会限制内外物质的扩散。这些性质分别依赖于乳液所使用的双水相体系(ATPS)的组成和界面脂质体层的结构。在这里,我们研究了改变双水相体系,从标准的聚乙二醇(PEG)8 kDa/葡聚糖 10 kDa 双水相体系到 PEG 8 kDa/Ficoll 70 kDa 或 PEG 8 kDa/NaSO 双水相体系,如何影响液滴的均一性和模型溶质(U15 寡核苷酸)的分配。我们还比较了两种不同方法形成的脂质体,这两种方法都是从温和水合形成的多分散的多层囊泡开始的:(1)挤出,产生平均直径为 150nm 的囊泡,和(2)涡旋,产生平均直径为 270nm 的囊泡。我们的数据表明,虽然基于挤出囊泡的样品的液滴均一性和稳定性稍好一些,但挤出并不是创建功能性微反应器所必需的,因为用涡旋脂质体稳定的乳液在溶质分配方面同样有效,并允许溶质穿过液滴的脂质体冠扩散。这项工作扩展了可用于脂质体稳定的全水乳液滴生物反应器的组成,使它们更适用于更广泛的潜在反应。用涡旋代替脂质体挤出步骤可以减少生物反应器生产的时间和成本,而对乳液质量的影响很小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验