Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 South Kingshighway Boulevard, St. Louis, MO, 63110, USA.
Eur Spine J. 2021 Aug;30(8):2150-2156. doi: 10.1007/s00586-021-06793-5. Epub 2021 Mar 8.
Visualization of annular fissures on MRI is becoming increasingly important but remains challenging. Our purpose was to test whether an image processing algorithm could improve detection of annular fissures.
In this retrospective study, two neuroradiologists identified 56 IVDs with annular fissures and 97 IVDs with normal annulus fibrosus in lumbar spine MRIs of 101 patients (58 M, 43 F; age ± SD 15.1 ± 3.0 years). Signal intensities of diseased and normal annulus fibrosus, and contrast-to-noise ratio between them on sagittal T2-weighted images were calculated before and after processing with a proprietary software. Effect of processing on detection of annular fissures by two masked neuroradiologists was also studied for IVDs with Pfirrmann grades of ≤ 2 and > 2.
Mean (SD) signal baseline intensities of diseased and normal annulus fibrosus were 57.6 (23.3) and 24.4 (7.8), respectively (p < 0.001). Processing increased (p < 0.001) the mean (SD) intensity of diseased annulus to 110.6 (47.9), without affecting the signal intensity of normal annulus (p = 0.14). Mean (SD) CNR between the diseased and normal annulus increased (p < 0.001) from 11.8 (14.1) to 29.6 (29.1). Both masked readers detected more annular fissures after processing in IVDs with Pfirrmann grade of ≤ 2 and > 2, with an apparent increased sensitivity and decreased specificity using predefined image-based human categorization as a reference standard.
Image processing improved CNR of annular fissures and detection rate of annular fissures. However, further studies with a more stringent reference standard are needed to assess its effect on sensitivity and specificity.
磁共振成像(MRI)上环形裂隙的可视化正变得越来越重要,但仍具有挑战性。我们的目的是测试图像处理算法是否可以提高环形裂隙的检测能力。
在这项回顾性研究中,两位神经放射科医生在 101 名患者(58 名男性,43 名女性;年龄均数±标准差 15.1±3.0 岁)的腰椎 MRI 中识别了 56 个存在环形裂隙的椎间盘和 97 个正常纤维环的椎间盘。在使用专有的软件处理前后,计算病变和正常纤维环的矢状 T2 加权图像上的信号强度以及它们之间的对比噪声比。还研究了处理对 Pfirrmann 分级≤2 和>2 的椎间盘环形裂隙检测的影响。
病变和正常纤维环的平均(标准差)信号基线强度分别为 57.6(23.3)和 24.4(7.8)(p<0.001)。处理后,病变纤维环的平均(标准差)强度增加至 110.6(47.9)(p<0.001),而正常纤维环的信号强度无变化(p=0.14)。病变和正常纤维环之间的平均(标准差)CNR 增加(p<0.001),从 11.8(14.1)增加到 29.6(29.1)。两位盲法读者在 Pfirrmann 分级≤2 和>2 的椎间盘处理后都检测到更多的环形裂隙,使用预定义的基于图像的人类分类作为参考标准,灵敏度提高,特异性降低。
图像处理提高了环形裂隙的 CNR 和检测率。然而,需要进一步的研究,采用更严格的参考标准来评估其对灵敏度和特异性的影响。