Suppr超能文献

系综涨落对宏观变量的方差很重要。

Ensemble fluctuations matter for variances of macroscopic variables.

作者信息

George G, Klochko L, Semenov A N, Baschnagel J, Wittmer J P

机构信息

Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.

出版信息

Eur Phys J E Soft Matter. 2021 Mar 8;44(2):13. doi: 10.1140/epje/s10189-020-00004-7.

Abstract

Extending recent work on stress fluctuations in complex fluids and amorphous solids we describe in general terms the ensemble average [Formula: see text] and the standard deviation [Formula: see text] of the variance [Formula: see text] of time series [Formula: see text] of a stochastic process x(t) measured over a finite sampling time [Formula: see text]. Assuming a stationary, Gaussian and ergodic process, [Formula: see text] is given by a functional [Formula: see text] of the autocorrelation function h(t). [Formula: see text] is shown to become large and similar to [Formula: see text] if [Formula: see text] corresponds to a fast relaxation process. Albeit [Formula: see text] does not hold in general for non-ergodic systems, the deviations for common systems with many microstates are merely finite-size corrections. Various issues are illustrated for shear-stress fluctuations in simple coarse-grained model systems.

摘要

扩展近期关于复杂流体和非晶态固体中应力涨落的研究工作,我们用一般术语描述了在有限采样时间(\tau)内测量的随机过程(x(t))的时间序列({x(t)})的方差(\sigma^2(t))的系综平均(\langle\sigma^2\rangle)和标准差(\sigma)。假设过程是平稳、高斯且遍历的,(\langle\sigma^2\rangle)由自相关函数(h(t))的泛函(F[h])给出。如果(\tau)对应于快速弛豫过程,(\sigma)会变得很大且类似于(\langle\sigma^2\rangle)。尽管对于非遍历系统(\langle\sigma^2\rangle\neq\sigma^2)一般不成立,但对于具有许多微观状态的常见系统,偏差仅仅是有限尺寸修正。在简单的粗粒化模型系统中,针对剪应力涨落说明了各种问题。

相似文献

1
Ensemble fluctuations matter for variances of macroscopic variables.
Eur Phys J E Soft Matter. 2021 Mar 8;44(2):13. doi: 10.1140/epje/s10189-020-00004-7.
2
Fluctuations of non-ergodic stochastic processes.
Eur Phys J E Soft Matter. 2021 Apr 18;44(4):54. doi: 10.1140/epje/s10189-021-00070-5.
3
Simple models for strictly non-ergodic stochastic processes of macroscopic systems.
Eur Phys J E Soft Matter. 2021 Oct 11;44(10):125. doi: 10.1140/epje/s10189-021-00129-3.
4
Different types of spatial correlation functions for non-ergodic stochastic processes of macroscopic systems.
Eur Phys J E Soft Matter. 2022 Aug 6;45(8):65. doi: 10.1140/epje/s10189-022-00222-1.
5
Trajectory and Cycle-Based Thermodynamics and Kinetics of Molecular Machines: The Importance of Microscopic Reversibility.
Acc Chem Res. 2018 Nov 20;51(11):2653-2661. doi: 10.1021/acs.accounts.8b00253. Epub 2018 Oct 11.
6
7
Evolution of stochastic demography with life history tradeoffs in density-dependent age-structured populations.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11582-11590. doi: 10.1073/pnas.1710679114. Epub 2017 Oct 10.
8
Predicting ligand binding affinity using on- and off-rates for the SAMPL6 SAMPLing challenge.
J Comput Aided Mol Des. 2018 Oct;32(10):1001-1012. doi: 10.1007/s10822-018-0149-3. Epub 2018 Aug 23.
9
Signature of jamming under steady shear in dense particulate suspensions.
J Phys Condens Matter. 2020 Mar 20;32(12):124002. doi: 10.1088/1361-648X/ab5bd2. Epub 2019 Nov 26.
10
Enhanced hyperuniformity from random reorganization.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4294-4299. doi: 10.1073/pnas.1619260114. Epub 2017 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验