Institut Charles Sadron, Université de Strasbourg & CNRS, 23 rue du Loess, 67034, Strasbourg Cedex, France.
Eur Phys J E Soft Matter. 2022 Aug 6;45(8):65. doi: 10.1140/epje/s10189-022-00222-1.
Focusing on non-ergodic macroscopic systems, we reconsider the variances [Formula: see text] of time averages [Formula: see text] of time-series [Formula: see text]. The total variance [Formula: see text] (direct average over all time series) is known to be the sum of an internal variance [Formula: see text] (fluctuations within the meta-basins) and an external variance [Formula: see text] (fluctuations between meta-basins). It is shown that whenever [Formula: see text] can be expressed as a volume average of a local field [Formula: see text] the three variances can be written as volume averages of correlation functions [Formula: see text], [Formula: see text] and [Formula: see text] with [Formula: see text]. The dependences of the [Formula: see text] on the sampling time [Formula: see text] and the system volume V can thus be traced back to [Formula: see text] and [Formula: see text]. Various relations are illustrated using lattice spring models with spatially correlated spring constants. .
本文聚焦于非遍历的宏观系统,重新考虑了时间序列 [Formula: see text] 的时间平均值 [Formula: see text] 的方差 [Formula: see text]。众所周知,总方差 [Formula: see text](对所有时间序列的直接平均)是内部方差 [Formula: see text](元盆地内的波动)和外部方差 [Formula: see text](元盆地之间的波动)之和。本文证明,只要 [Formula: see text] 可以表示为局部场 [Formula: see text] 的体积平均值,则这三个方差可以表示为相关函数 [Formula: see text]、[Formula: see text] 和 [Formula: see text] 的体积平均值,其中 [Formula: see text]。因此,[Formula: see text] 对采样时间 [Formula: see text] 和系统体积 V 的依赖关系可以追溯到 [Formula: see text] 和 [Formula: see text]。使用具有空间相关弹簧常数的晶格弹簧模型说明了各种关系。