Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
J Chem Inf Model. 2021 Mar 22;61(3):1481-1492. doi: 10.1021/acs.jcim.0c01282. Epub 2021 Mar 8.
One of the grand challenges of this century is modeling and simulating a whole cell. Extreme regulation of an extensive quantity of model and simulation data during whole-cell modeling and simulation renders it a computationally expensive research problem in systems biology. In this article, we present a high-performance whole-cell simulation exploiting modular cell biology principles. We prepare the simulation by dividing the unicellular bacterium, (), into subcells utilizing the spatially localized densely connected protein clusters/modules. We set up a Brownian dynamics-based parallel whole-cell simulation framework by utilizing the Hamiltonian mechanics-based equations of motion. Though the velocity Verlet integration algorithm possesses the capability of solving the equations of motion, it lacks the ability to capture and deal with particle-collision scenarios. Hence, we propose an algorithm for detecting and resolving both elastic and inelastic collisions and subsequently modify the velocity Verlet integrator by incorporating our algorithm into it. Also, we address the boundary conditions to arrest the molecules' motion outside the subcell. For efficiency, we define one hashing-based data structure called the cellular dictionary to store all of the subcell-related information. A benchmark analysis of our CUDA C/C++ simulation code when tested on using the CPU-GPU cluster indicates that the computational time requirement decreases with the increase in the number of computing cores and becomes stable at around 128 cores. Additional testing on higher organisms such as and informs us that our proposed work can be extended to any organism and is scalable for high-end CPU-GPU clusters.
本世纪的重大挑战之一是对整个细胞进行建模和模拟。在整个细胞建模和模拟过程中,对大量模型和模拟数据进行极端调控,使得其成为系统生物学中计算成本高昂的研究问题。在本文中,我们提出了一种利用模块化细胞生物学原理的高性能全细胞模拟方法。我们通过利用空间上局部密集连接的蛋白质簇/模块将单细胞生物 () 划分为亚细胞来准备模拟。我们通过利用基于哈密顿力学的运动方程建立了基于布朗动力学的并行全细胞模拟框架。虽然速度 Verlet 积分算法具有求解运动方程的能力,但它缺乏捕获和处理粒子碰撞场景的能力。因此,我们提出了一种用于检测和解决弹性和非弹性碰撞的算法,并随后通过将我们的算法纳入其中来修改速度 Verlet 积分器。此外,我们还解决了边界条件,以阻止分子在亚细胞外的运动。为了提高效率,我们定义了一种基于哈希的称为细胞字典的数据结构,用于存储所有与亚细胞相关的信息。在使用 CPU-GPU 集群对 进行测试时,我们对 CUDA C/C++ 模拟代码的基准分析表明,计算时间需求随计算核心数量的增加而减少,并在大约 128 个核心时趋于稳定。对更高等生物如 和 的进一步测试表明,我们提出的工作可以扩展到任何生物体,并且可以在高端 CPU-GPU 集群上扩展。