Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.
Metab Eng. 2021 May;65:30-41. doi: 10.1016/j.ymben.2021.03.001. Epub 2021 Mar 5.
One grand challenge for bioproduction of desired metabolites is how to coordinate cell growth and product synthesis. Here we report that a tryptophan operon-assisted CRISPR interference (CRISPRi) system can switch glycerol oxidation and reduction pathways in Klebsiella pneumoniae, whereby the oxidation pathway provides energy to sustain growth, and the reduction pathway generates 1,3-propanediol and 3-hydroxypropionic acid (3-HP), two economically important chemicals. Reverse transcription and quantitative PCR (RT-qPCR) showed that this CRISPRi-dependent switch affected the expression of glycerol metabolism-related genes and in turn improved 3-HP production. In shake-flask cultivation, the strain coexpressing dCas9-sgRNA and PuuC (an aldehyde dehydrogenase native to K. pneumoniae for 3-HP biosynthesis) produced 3.6 g/L 3-HP, which was 1.62 times that of the strain only overexpressing PuuC. In a 5 L bioreactor, this CRISPRi strain produced 58.9 g/L 3-HP. When circulation feeding was implemented to alleviate metabolic stress, biomass was substantially improved and 88.8 g/L 3-HP was produced. These results indicated that this CRISPRi-dependent switch can efficiently reconcile biomass formation and 3-HP biosynthesis. Furthermore, this is the first report of coupling CRISPRi system with trp operon, and this architecture holds huge potential in regulating gene expression and allocating metabolic flux.
生物生产所需代谢物的一个重大挑战是如何协调细胞生长和产物合成。在这里,我们报告了色氨酸操纵子辅助的 CRISPR 干扰(CRISPRi)系统可以切换肺炎克雷伯氏菌中的甘油氧化和还原途径,其中氧化途径提供能量以维持生长,而还原途径生成 1,3-丙二醇和 3-羟基丙酸(3-HP),这两种都是具有经济重要性的化学品。逆转录和定量 PCR(RT-qPCR)表明,这种依赖于 CRISPRi 的切换影响了甘油代谢相关基因的表达,并进而提高了 3-HP 的产量。在摇瓶培养中,共表达 dCas9-sgRNA 和 PuuC(一种天然存在于肺炎克雷伯氏菌中的用于 3-HP 生物合成的醛脱氢酶)的菌株产生了 3.6 g/L 的 3-HP,是仅过表达 PuuC 的菌株的 1.62 倍。在 5 L 生物反应器中,该 CRISPRi 菌株产生了 58.9 g/L 的 3-HP。当实施循环进料以减轻代谢应激时,生物量得到了极大的提高,产生了 88.8 g/L 的 3-HP。这些结果表明,这种依赖于 CRISPRi 的切换可以有效地协调生物量形成和 3-HP 生物合成。此外,这是首次将 CRISPRi 系统与 trp 操纵子偶联的报道,这种结构在调节基因表达和分配代谢通量方面具有巨大潜力。