Suppr超能文献

通过工程色氨酸操纵子辅助 CRISPR 干扰系统在肺炎克雷伯氏菌中切换代谢通量。

Switching metabolic flux by engineering tryptophan operon-assisted CRISPR interference system in Klebsiella pneumoniae.

机构信息

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.

出版信息

Metab Eng. 2021 May;65:30-41. doi: 10.1016/j.ymben.2021.03.001. Epub 2021 Mar 5.

Abstract

One grand challenge for bioproduction of desired metabolites is how to coordinate cell growth and product synthesis. Here we report that a tryptophan operon-assisted CRISPR interference (CRISPRi) system can switch glycerol oxidation and reduction pathways in Klebsiella pneumoniae, whereby the oxidation pathway provides energy to sustain growth, and the reduction pathway generates 1,3-propanediol and 3-hydroxypropionic acid (3-HP), two economically important chemicals. Reverse transcription and quantitative PCR (RT-qPCR) showed that this CRISPRi-dependent switch affected the expression of glycerol metabolism-related genes and in turn improved 3-HP production. In shake-flask cultivation, the strain coexpressing dCas9-sgRNA and PuuC (an aldehyde dehydrogenase native to K. pneumoniae for 3-HP biosynthesis) produced 3.6 g/L 3-HP, which was 1.62 times that of the strain only overexpressing PuuC. In a 5 L bioreactor, this CRISPRi strain produced 58.9 g/L 3-HP. When circulation feeding was implemented to alleviate metabolic stress, biomass was substantially improved and 88.8 g/L 3-HP was produced. These results indicated that this CRISPRi-dependent switch can efficiently reconcile biomass formation and 3-HP biosynthesis. Furthermore, this is the first report of coupling CRISPRi system with trp operon, and this architecture holds huge potential in regulating gene expression and allocating metabolic flux.

摘要

生物生产所需代谢物的一个重大挑战是如何协调细胞生长和产物合成。在这里,我们报告了色氨酸操纵子辅助的 CRISPR 干扰(CRISPRi)系统可以切换肺炎克雷伯氏菌中的甘油氧化和还原途径,其中氧化途径提供能量以维持生长,而还原途径生成 1,3-丙二醇和 3-羟基丙酸(3-HP),这两种都是具有经济重要性的化学品。逆转录和定量 PCR(RT-qPCR)表明,这种依赖于 CRISPRi 的切换影响了甘油代谢相关基因的表达,并进而提高了 3-HP 的产量。在摇瓶培养中,共表达 dCas9-sgRNA 和 PuuC(一种天然存在于肺炎克雷伯氏菌中的用于 3-HP 生物合成的醛脱氢酶)的菌株产生了 3.6 g/L 的 3-HP,是仅过表达 PuuC 的菌株的 1.62 倍。在 5 L 生物反应器中,该 CRISPRi 菌株产生了 58.9 g/L 的 3-HP。当实施循环进料以减轻代谢应激时,生物量得到了极大的提高,产生了 88.8 g/L 的 3-HP。这些结果表明,这种依赖于 CRISPRi 的切换可以有效地协调生物量形成和 3-HP 生物合成。此外,这是首次将 CRISPRi 系统与 trp 操纵子偶联的报道,这种结构在调节基因表达和分配代谢通量方面具有巨大潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验