医学影像人工智能的数据准备:开放获取平台和工具的综合指南。
Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools.
机构信息
Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain.
Faculty of Mathematics and Computer Science, University of Barcelona, Barcelona, Spain.
出版信息
Phys Med. 2021 Mar;83:25-37. doi: 10.1016/j.ejmp.2021.02.007. Epub 2021 Mar 5.
The vast amount of data produced by today's medical imaging systems has led medical professionals to turn to novel technologies in order to efficiently handle their data and exploit the rich information present in them. In this context, artificial intelligence (AI) is emerging as one of the most prominent solutions, promising to revolutionise every day clinical practice and medical research. The pillar supporting the development of reliable and robust AI algorithms is the appropriate preparation of the medical images to be used by the AI-driven solutions. Here, we provide a comprehensive guide for the necessary steps to prepare medical images prior to developing or applying AI algorithms. The main steps involved in a typical medical image preparation pipeline include: (i) image acquisition at clinical sites, (ii) image de-identification to remove personal information and protect patient privacy, (iii) data curation to control for image and associated information quality, (iv) image storage, and (v) image annotation. There exists a plethora of open access tools to perform each of the aforementioned tasks and are hereby reviewed. Furthermore, we detail medical image repositories covering different organs and diseases. Such repositories are constantly increasing and enriched with the advent of big data. Lastly, we offer directions for future work in this rapidly evolving field.
当今的医学成像系统所产生的大量数据使得医学专业人员转向新颖的技术,以便有效地处理数据并利用其中丰富的信息。在这种情况下,人工智能 (AI) 作为最突出的解决方案之一崭露头角,有望彻底改变日常临床实践和医学研究。支持开发可靠和强大的 AI 算法的支柱是为 AI 驱动的解决方案准备要使用的医学图像。在这里,我们提供了一个综合指南,介绍了在开发或应用 AI 算法之前准备医学图像所需的步骤。典型的医学图像准备管道中的主要步骤包括:(i)在临床场所进行图像采集,(ii) 去除身份信息以去除个人信息并保护患者隐私,(iii) 数据管理以控制图像和相关信息质量,(iv) 图像存储,以及 (v) 图像注释。有大量的开放访问工具可用于执行上述每一项任务,并在此进行了回顾。此外,我们详细介绍了涵盖不同器官和疾病的医学图像存储库。随着大数据的出现,这些存储库不断增加并得到丰富。最后,我们为这个快速发展的领域的未来工作提供了方向。