Suppr超能文献

人工智能在医学成像中的数据基础设施:五个欧盟项目经验报告。

Data infrastructures for AI in medical imaging: a report on the experiences of five EU projects.

机构信息

FORTH-ICS, FORTH-ICS, N. Plastira 100, Heraklion, Crete, Greece.

Quibim SL, Valencia, Spain.

出版信息

Eur Radiol Exp. 2023 May 8;7(1):20. doi: 10.1186/s41747-023-00336-x.

Abstract

Artificial intelligence (AI) is transforming the field of medical imaging and has the potential to bring medicine from the era of 'sick-care' to the era of healthcare and prevention. The development of AI requires access to large, complete, and harmonized real-world datasets, representative of the population, and disease diversity. However, to date, efforts are fragmented, based on single-institution, size-limited, and annotation-limited datasets. Available public datasets (e.g., The Cancer Imaging Archive, TCIA, USA) are limited in scope, making model generalizability really difficult. In this direction, five European Union projects are currently working on the development of big data infrastructures that will enable European, ethically and General Data Protection Regulation-compliant, quality-controlled, cancer-related, medical imaging platforms, in which both large-scale data and AI algorithms will coexist. The vision is to create sustainable AI cloud-based platforms for the development, implementation, verification, and validation of trustable, usable, and reliable AI models for addressing specific unmet needs regarding cancer care provision. In this paper, we present an overview of the development efforts highlighting challenges and approaches selected providing valuable feedback to future attempts in the area.Key points• Artificial intelligence models for health imaging require access to large amounts of harmonized imaging data and metadata.• Main infrastructures adopted either collect centrally anonymized data or enable access to pseudonymized distributed data.• Developing a common data model for storing all relevant information is a challenge.• Trust of data providers in data sharing initiatives is essential.• An online European Union meta-tool-repository is a necessity minimizing effort duplication for the various projects in the area.

摘要

人工智能(AI)正在改变医学成像领域,有可能将医学从“疾病治疗”时代带入“健康保健和预防”时代。AI 的发展需要访问大型、完整和协调的真实世界数据集,这些数据集代表了人群和疾病的多样性。然而,迄今为止,这些努力都是分散的,基于单一机构、规模有限且注释有限的数据集。现有的公共数据集(例如,美国的癌症成像档案,TCIA)的范围有限,使得模型的泛化能力变得非常困难。在这方面,五个欧盟项目目前正在开发大数据基础设施,这些基础设施将使欧洲能够以符合伦理和通用数据保护条例的方式,控制质量,进行癌症相关的医学成像平台,在该平台中,大规模数据和 AI 算法将共存。愿景是为开发、实施、验证和验证针对癌症护理提供特定未满足需求的可信、可用和可靠的 AI 模型,创建可持续的 AI 基于云的平台。本文概述了开发工作,重点介绍了所选择的挑战和方法,为该领域的未来尝试提供了有价值的反馈。

关键点

• 用于健康成像的人工智能模型需要访问大量协调的成像数据和元数据。

• 主要基础设施要么集中收集匿名数据,要么允许访问假名分布式数据。

• 开发用于存储所有相关信息的通用数据模型是一个挑战。

• 数据提供者对数据共享计划的信任至关重要。

• 在线欧盟元工具存储库是必要的,可最大限度地减少该领域各个项目的重复工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae6/10164664/6706d304e57b/41747_2023_336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验