Suppr超能文献

氧化物界面原子尺度重构的电子束写入

Electron-Beam Writing of Atomic-Scale Reconstructions at Oxide Interfaces.

作者信息

Segantini Greta, Hsu Chih-Ying, Rischau Carl Willem, Blah Patrick, Matthiesen Mattias, Gariglio Stefano, Triscone Jean-Marc, Alexander Duncan T L, Caviglia Andrea D

机构信息

Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.

Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics (IPHYS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

Nano Lett. 2024 Nov 13;24(45):14191-14197. doi: 10.1021/acs.nanolett.4c02913. Epub 2024 Nov 1.

Abstract

The epitaxial growth of complex oxides enables the production of high-quality films, yet substrate choice is restricted to certain symmetry and lattice parameters, thereby limiting the technological applications of epitaxial oxides. In comparison, the development of free-standing oxide membranes gives opportunities to create novel heterostructures by nonepitaxial stacking of membranes, opening new possibilities for materials design. Here, we introduce a method for writing, with atomic precision, ionically bonded crystalline materials across the gap between an oxide membrane and a carrier substrate. The process involves a thermal pretreatment, followed by localized exposure to the raster scan of a scanning transmission electron microscopy (STEM) beam. STEM imaging and electron energy-loss spectroscopy show that we achieve atomically sharp interface reconstructions between a 30-nm-thick SrTiO membrane and a niobium-doped SrTiO(001)-oriented carrier substrate. These findings indicate new strategies for fabricating synthetic heterostructures with novel structural and electronic properties.

摘要

复杂氧化物的外延生长能够制备高质量薄膜,然而衬底的选择局限于特定的对称性和晶格参数,从而限制了外延氧化物的技术应用。相比之下,独立氧化物薄膜的发展为通过非外延方式堆叠薄膜来创建新型异质结构提供了机会,为材料设计开辟了新的可能性。在此,我们介绍一种方法,能够以原子精度在氧化物薄膜与载体衬底之间的间隙上书写离子键合的晶体材料。该过程包括热预处理,随后对扫描透射电子显微镜(STEM)束进行光栅扫描的局部曝光。STEM成像和电子能量损失谱表明,我们在30纳米厚的SrTiO薄膜与铌掺杂的SrTiO(001)取向的载体衬底之间实现了原子级锐利的界面重构。这些发现为制造具有新颖结构和电子特性的合成异质结构指明了新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e98/11565737/e2dfcf0c699d/nl4c02913_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验