Suppr超能文献

ReHiC:通过残差卷积网络提高 Hi-C 数据分辨率。

ReHiC: Enhancing Hi-C data resolution via residual convolutional network.

机构信息

National Pilot School of Software, Yunnan University, Kunming 650000, China.

Engineering Research Center of Cyberspace, Yunnan University, Kunming 650000, China.

出版信息

J Bioinform Comput Biol. 2021 Apr;19(2):2150001. doi: 10.1142/S0219720021500013. Epub 2021 Mar 8.

Abstract

High-throughput chromosome conformation capture (Hi-C) is one of the most popular methods for studying the three-dimensional organization of genomes. However, Hi-C protocols can be expensive since they require large amounts of sample material and may be time-consuming. Most commonly used Hi-C data are low-resolution. Such data can only be used to identify large-scale genomic interactions and are not sufficient to identify the small-scale patterns. We propose a novel deep learning-based computational approach (named ReHiC) that enhances the resolution of Hi-C data and allows us to achieve high-resolution Hi-C data at a relatively low cost. Our model only requires 1/16 down-sampling ratio of the original sequence reading to predict higher resolution Hi-C data. This is very close to high-resolution data in terms of numerical distribution and interaction distribution. More importantly, our framework stacks deeper and converges faster due to residual blocks in the core of the network. Extensive experiments show that ReHiC performs better than HiCPlus and HiCNN, two recently developed and frequently used methods to look at the spatial organization of chromatin structure in the cell. Moreover, the portability of our framework verified by extensive experiments shows that the trained model can also enhance the Hi-C matrix of other cell types efficiently. In conclusion, ReHiC offers more accurate high-resolution image reconstruction in a broad field.

摘要

高通量染色体构象捕获(Hi-C)是研究基因组三维结构的最流行方法之一。然而,Hi-C 方案可能很昂贵,因为它们需要大量的样本材料,并且可能耗时。最常用的 Hi-C 数据是低分辨率的。此类数据只能用于识别大规模基因组相互作用,不足以识别小规模模式。我们提出了一种新的基于深度学习的计算方法(名为 ReHiC),该方法可以提高 Hi-C 数据的分辨率,并使我们能够以相对较低的成本获得高分辨率的 Hi-C 数据。我们的模型只需要原始序列读取的 1/16 下采样比即可预测更高分辨率的 Hi-C 数据。这在数值分布和相互作用分布方面非常接近高分辨率数据。更重要的是,由于网络核心中的残差块,我们的框架堆叠得更深,收敛得更快。广泛的实验表明,ReHiC 优于 HiCPlus 和 HiCNN,这两种是最近开发的、常用于研究细胞内染色质结构空间组织的方法。此外,通过广泛的实验验证了我们框架的可移植性表明,训练后的模型还可以有效地增强其他细胞类型的 Hi-C 矩阵。总之,ReHiC 在更广泛的领域提供了更准确的高分辨率图像重建。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验