Suppr超能文献

DFHiC:一种扩张全卷积模型,用于提高 Hi-C 数据的分辨率。

DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.

机构信息

School of Computer Science and Engineering, Central South University, Changsha 410083, China.

Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.

出版信息

Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad211.

Abstract

MOTIVATION

Hi-C technology has been the most widely used chromosome conformation capture (3C) experiment that measures the frequency of all paired interactions in the entire genome, which is a powerful tool for studying the 3D structure of the genome. The fineness of the constructed genome structure depends on the resolution of Hi-C data. However, due to the fact that high-resolution Hi-C data require deep sequencing and thus high experimental cost, most available Hi-C data are in low-resolution. Hence, it is essential to enhance the quality of Hi-C data by developing the effective computational methods.

RESULTS

In this work, we propose a novel method, so-called DFHiC, which generates the high-resolution Hi-C matrix from the low-resolution Hi-C matrix in the framework of the dilated convolutional neural network. The dilated convolution is able to effectively explore the global patterns in the overall Hi-C matrix by taking advantage of the information of the Hi-C matrix in a way of the longer genomic distance. Consequently, DFHiC can improve the resolution of the Hi-C matrix reliably and accurately. More importantly, the super-resolution Hi-C data enhanced by DFHiC is more in line with the real high-resolution Hi-C data than those done by the other existing methods, in terms of both chromatin significant interactions and identifying topologically associating domains.

AVAILABILITY AND IMPLEMENTATION

https://github.com/BinWangCSU/DFHiC.

摘要

动机

Hi-C 技术是最广泛使用的染色体构象捕获(3C)实验,用于测量整个基因组中所有配对相互作用的频率,是研究基因组三维结构的有力工具。构建的基因组结构的精细程度取决于 Hi-C 数据的分辨率。然而,由于高分辨率 Hi-C 数据需要深度测序,因此实验成本很高,大多数可用的 Hi-C 数据都是低分辨率的。因此,通过开发有效的计算方法来提高 Hi-C 数据的质量是至关重要的。

结果

在这项工作中,我们提出了一种新的方法,称为 DFHiC,它在扩张卷积神经网络的框架中,从低分辨率的 Hi-C 矩阵生成高分辨率的 Hi-C 矩阵。扩张卷积能够通过以更长的基因组距离的方式利用 Hi-C 矩阵的信息,有效地探索整个 Hi-C 矩阵中的全局模式。因此,DFHiC 可以可靠而准确地提高 Hi-C 矩阵的分辨率。更重要的是,DFHiC 增强的超高分辨率 Hi-C 数据在染色质显著相互作用和识别拓扑关联域方面,比其他现有方法更符合真实的高分辨率 Hi-C 数据。

可用性和实现

https://github.com/BinWangCSU/DFHiC。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7c1/10166584/186cbe29a90e/btad211f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验