Suppr超能文献

温泽尔对杨氏方程液滴接触角的扩展在何时适用?一项密度泛函研究。

When does Wenzel's extension of Young's equation for the contact angle of droplets apply? A density functional study.

作者信息

Egorov Sergei A, Binder Kurt

机构信息

Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA.

Institut für Physik, Johannes Gutenberg Universität Mainz, 55099 Mainz, Germany.

出版信息

J Chem Phys. 2020 May 21;152(19):194707. doi: 10.1063/5.0005537.

Abstract

The contact angle of a liquid droplet on a surface under partial wetting conditions differs for a nanoscopically rough or periodically corrugated surface from its value for a perfectly flat surface. Wenzel's relation attributes this difference simply to the geometric magnification of the surface area (by a factor r), but the validity of this idea is controversial. We elucidate this problem by model calculations for a sinusoidal corrugation of the form z(y) = Δ cos(2πy/λ), for a potential of short range σ acting from the wall on the fluid particles. When the vapor phase is an ideal gas, the change in the wall-vapor surface tension can be computed exactly, and corrections to Wenzel's equation are typically of the order σΔ/λ. For fixed r and fixed σ, the approach to Wenzel's result with increasing λ may be nonmonotonic and this limit often is only reached for λ/σ > 30. For a non-additive binary mixture, density functional theory is used to work out the density profiles of both coexisting phases for planar and corrugated walls as well as the corresponding surface tensions. Again, deviations from Wenzel's results of similar magnitude as in the above ideal gas case are predicted. Finally, a crudely simplified description based on the interface Hamiltonian concept is used to interpret the corresponding simulation results along similar lines. Wenzel's approach is found to generally hold when λ/σ ≫ 1 and Δ/λ < 1 and under conditions avoiding proximity of wetting or filling transitions.

摘要

在部分润湿条件下,纳米级粗糙或周期性波纹表面上液滴的接触角与其在完全平坦表面上的值不同。温泽尔关系式将这种差异简单归因于表面积的几何放大(放大因子为r),但这一观点的有效性存在争议。对于壁对流体粒子作用的短程势σ,我们通过对z(y)=Δcos(2πy/λ)形式的正弦波纹进行模型计算来阐明这个问题。当气相为理想气体时,可以精确计算壁 - 气表面张力的变化,对温泽尔方程的修正通常为σΔ/λ量级。对于固定的r和固定的σ,随着λ增大趋近温泽尔结果的过程可能是非单调的,且通常仅在λ/σ>30时才达到该极限。对于非加和二元混合物,利用密度泛函理论计算平面壁和波纹壁共存两相的密度分布以及相应的表面张力。同样,预测出与上述理想气体情况类似量级的偏离温泽尔结果的情况。最后,基于界面哈密顿量概念的粗略简化描述用于沿相似思路解释相应的模拟结果。发现当λ/σ≫1且Δ/λ<1以及在避免接近润湿或填充转变的条件下,温泽尔方法通常成立。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验