Suppr超能文献

批式培养中酶催化复合代谢网络的鲁棒性分析与辨识。

Robustness analysis and identification for an enzyme-catalytic complex metabolic network in batch culture.

机构信息

School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China.

School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, Liaoning, People's Republic of China.

出版信息

Bioprocess Biosyst Eng. 2021 Jul;44(7):1511-1524. doi: 10.1007/s00449-021-02535-5. Epub 2021 Mar 9.

Abstract

Bioconversion of glycerol to 1,3-propanediol is a promising way to mitigate the shortage of energy. To maximize the production of 1,3-propanediol, it needs to control precisely microbial fermentation process. However, it might consume lots of human and material resources when conducting experimental tests many times. In this study, a nonlinear enzyme-catalytic dynamical system is developed to describe the bioconversion process of glycerol to 1,3-propanediol, especially continuous piecewise linear functions are used as identification parameters. The existence, uniqueness and continuity of solutions are also discussed. Then, considering the fact that the concentration of intracellular substances is difficult to measure in experiments, a new quantitative definition of biological robustness is introduced as a performance index to determine the identification parameters related to intracellular substances. Meanwhile, a two-phase optimization algorithm is constructed to solve the identification model. By comparison with the experimental data, it can be found that the present nonlinear dynamical system can describe the fermentation process very well. Finally, the present nonlinear dynamical system and the corresponding optimal identification parameters might be useful in future studies on the batch culture of glycerol to 1,3-propanediol.

摘要

甘油到 1,3-丙二醇的生物转化是缓解能源短缺的一种有前途的方法。为了最大限度地提高 1,3-丙二醇的产量,需要精确控制微生物发酵过程。然而,进行多次实验测试可能会消耗大量的人力和物力资源。在这项研究中,开发了一个非线性酶催化动力系统来描述甘油到 1,3-丙二醇的生物转化过程,特别是使用连续分段线性函数作为识别参数。还讨论了解的存在性、唯一性和连续性。然后,考虑到细胞内物质的浓度在实验中很难测量的事实,引入了一种新的生物稳健性定量定义作为性能指标,以确定与细胞内物质相关的识别参数。同时,构建了一个两阶段优化算法来求解识别模型。通过与实验数据进行比较,可以发现该非线性动力系统可以很好地描述发酵过程。最后,本非线性动力系统及其相应的最优识别参数可能对未来甘油到 1,3-丙二醇的批式培养研究有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验