Suppr超能文献

状态估计和非线性跟踪控制仿真方法。在生物乙醇生产系统中的应用。

State estimation and nonlinear tracking control simulation approach. Application to a bioethanol production system.

机构信息

Instituto de Ingeniería Química, Universidad Nacional de San Juan (UNSJ), CONICET, Av. Lib. San Martín Oeste 1109, J5400ARL, San Juan, Argentina.

出版信息

Bioprocess Biosyst Eng. 2021 Aug;44(8):1755-1768. doi: 10.1007/s00449-021-02558-y. Epub 2021 May 16.

Abstract

Tracking control of specific variables is key to achieve a proper fermentation. This paper analyzes a fed-batch bioethanol production process. For this system, a controller design based on linear algebra is proposed. Moreover, to achieve a reliable control, on-line monitoring of certain variables is needed. In this sense, for unmeasurable variables, state estimators based on Gaussian processes are designed. Cell, ethanol and glycerol concentrations are predicted with only substrates measurement. Simulation results when the controller and estimators are coupled, are shown. Furthermore, the algorithms were tested with parametric uncertainties and disturbances in the control action, and are compared, in all cases, with neural networks estimators (previous work). Bayesian estimators show a performance improvement, which is reflected in a decrease of the total error. Proposed techniques give reliable monitoring and control tools, with a low computational and economic cost, and less mathematical complexity than neural network estimators.

摘要

跟踪控制特定变量是实现适当发酵的关键。本文分析了分批式生物乙醇生产过程。针对该系统,提出了一种基于线性代数的控制器设计。此外,为了实现可靠的控制,需要在线监测某些变量。从这个意义上说,对于不可测量的变量,基于高斯过程的状态估计器被设计出来。仅通过底物测量即可预测细胞、乙醇和甘油浓度。当控制器和估计器耦合时,显示了仿真结果。此外,算法在控制作用中的参数不确定性和干扰下进行了测试,并在所有情况下都与神经网络估计器(以前的工作)进行了比较。贝叶斯估计器显示出性能的提高,这反映在总误差的降低上。所提出的技术提供了可靠的监测和控制工具,具有低计算和经济成本,并且比神经网络估计器的数学复杂性更低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验