Suppr超能文献

一种用于研究糖尿病潜在线索的新型人工智能协议。

A novel artificial intelligence protocol to investigate potential leads for diabetes mellitus.

机构信息

Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-Sen University, Shenzhen, 510275, China.

School of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen, 510275, China.

出版信息

Mol Divers. 2021 Aug;25(3):1375-1393. doi: 10.1007/s11030-021-10204-8. Epub 2021 Mar 9.

Abstract

Dipeptidyl peptidase-4 (DPP4) is highly participated in regulating diabetes mellitus (DM), and inhibitors of DPP4 may act as potential DM drugs. Therefore, we performed a novel artificial intelligence (AI) protocol to screen and validate the potential inhibitors from Traditional Chinese Medicine Database. The potent top 10 compounds were selected as candidates by Dock Score. In order to further screen the candidates, we used numbers of machine learning regression models containing support vector machines, bagging, random forest and other regression algorithms, as well as deep neural network models to predict the activity of the candidates. In addition, as a traditional method, 2D QSAR (multiple linear regression) and 3D QSAR methods are also applied. The AI methods got a better performance than the traditional 2D QSAR method. Moreover, we also built a framework composed of deep neural networks and transformer to predict the binding affinity of candidates and DPP4. Artificial intelligence methods and QSAR models illustrated the compound, 2007_4105, was a potent inhibitor. The 2007_4105 compound was finally validated by molecular dynamics simulations. Combining all the models and algorithms constructed and the results, Hypecoum leptocarpum might be a potential and effective medicine herb for the treatment of DM.

摘要

二肽基肽酶-4(DPP4)高度参与调节糖尿病(DM),DPP4 的抑制剂可能作为潜在的 DM 药物。因此,我们采用一种新的人工智能(AI)方案,从中药数据库中筛选和验证潜在的抑制剂。通过对接评分,选择了前 10 种强效化合物作为候选物。为了进一步筛选候选物,我们使用了许多机器学习回归模型,包含支持向量机、袋装、随机森林和其他回归算法,以及深度神经网络模型,来预测候选物的活性。此外,作为一种传统方法,还应用了二维定量构效关系(多元线性回归)和三维定量构效关系方法。AI 方法的性能优于传统的二维 QSAR 方法。此外,我们还构建了一个由深度神经网络和转换器组成的框架,来预测候选物与 DPP4 的结合亲和力。人工智能方法和 QSAR 模型表明,化合物 2007_4105 是一种有效的抑制剂。通过分子动力学模拟对 2007_4105 化合物进行了验证。综合所有构建的模型和算法以及结果,表明蜂斗菜属植物可能是一种治疗 DM 的潜在有效药物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验