State Key Laboratory of Biotherapy and Cancer Center, West China Hospital , Sichuan University , Chengdu , Sichuan 610041 , China.
ETH Zurich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 4 , CH-8093 Zurich , Switzerland.
Chem Rev. 2019 Sep 25;119(18):10520-10594. doi: 10.1021/acs.chemrev.8b00728. Epub 2019 Jul 11.
Artificial intelligence (AI), and, in particular, deep learning as a subcategory of AI, provides opportunities for the discovery and development of innovative drugs. Various machine learning approaches have recently (re)emerged, some of which may be considered instances of domain-specific AI which have been successfully employed for drug discovery and design. This review provides a comprehensive portrayal of these machine learning techniques and of their applications in medicinal chemistry. After introducing the basic principles, alongside some application notes, of the various machine learning algorithms, the current state-of-the art of AI-assisted pharmaceutical discovery is discussed, including applications in structure- and ligand-based virtual screening, de novo drug design, physicochemical and pharmacokinetic property prediction, drug repurposing, and related aspects. Finally, several challenges and limitations of the current methods are summarized, with a view to potential future directions for AI-assisted drug discovery and design.
人工智能(AI),特别是深度学习作为 AI 的一个子类,为发现和开发创新药物提供了机会。最近出现了各种机器学习方法,其中一些可以被认为是特定于领域的 AI 实例,已经成功地应用于药物发现和设计。本综述全面描述了这些机器学习技术及其在药物化学中的应用。在介绍了各种机器学习算法的基本原理和一些应用注意事项之后,讨论了人工智能辅助药物发现的最新进展,包括在结构和配体虚拟筛选、从头药物设计、物理化学和药代动力学性质预测、药物再利用等方面的应用。最后,总结了当前方法的几个挑战和局限性,以期为人工智能辅助药物发现和设计的未来方向提供参考。