Kontarinis Alexandros, Zeitouni Karine, Marinica Claudia, Vodislav Dan, Kotzinos Dimitris
ETIS UMR8051, ENSEA, CNRS, CY Cergy Paris University, F-95000 Cergy, France.
DAVID Laboratory, Université Paris-Saclay, University of Versailles Saint-Quentin, Versailles, France.
Geoinformatica. 2021;25(2):311-352. doi: 10.1007/s10707-020-00430-x. Epub 2021 Mar 5.
In this paper we present a new conceptual model of trajectories, which accounts for semantic and indoor space information and supports the design and implementation of context-aware mobility data mining and statistical analytics methods. Motivated by a compelling museum case study, and by what we perceive as a lack in indoor trajectory research, we combine aspects of state-of-the-art semantic outdoor trajectory models, with a semantically-enabled hierarchical symbolic representation of the indoor space, which abides by OGC's IndoorGML standard. We drive the discussion on modeling issues that have been overlooked so far and illustrate them with a real-world case study concerning the Louvre Museum, in an effort to provide a pragmatic view of what the proposed model represents and how. We also present experimental results based on Louvre's visiting data showcasing how state-of-the-art mining algorithms can be applied on trajectory data represented according to the proposed model, and outline their advantages and limitations. Finally, we provide a formal outline of a new sequential pattern mining algorithm and how it can be used for extracting interesting trajectory patterns.
在本文中,我们提出了一种新的轨迹概念模型,该模型考虑了语义和室内空间信息,并支持上下文感知移动性数据挖掘和统计分析方法的设计与实现。受一个引人注目的博物馆案例研究以及我们所认为的室内轨迹研究不足的启发,我们将最先进的语义户外轨迹模型的各个方面与符合OGC的室内地理标记语言(IndoorGML)标准的室内空间语义分层符号表示相结合。我们推动了对迄今被忽视的建模问题的讨论,并通过一个关于卢浮宫博物馆的实际案例研究对其进行说明,以便务实了解所提出的模型代表什么以及如何运作。我们还展示了基于卢浮宫参观数据的实验结果,展示了如何将最先进的挖掘算法应用于根据所提出的模型表示的轨迹数据,并概述了它们的优缺点。最后,我们提供了一种新的序列模式挖掘算法的形式化概述,以及如何使用它来提取有趣的轨迹模式。