Suppr超能文献

超越标签:描述和理解 2019 年 5 月#BJSConnect 推文聊天的全面影响。

Beyond the hashtag: describing and understanding the full impact of the #BJSConnect tweet chat May 2019.

机构信息

NHS Education for Scotland, Edinburgh, UK.

Sección de Cirugía General y Digestiva, Wexham Park Hospital, Slough, UK.

出版信息

BJS Open. 2021 Mar 5;5(2). doi: 10.1093/bjsopen/zraa019.

Abstract

BACKGROUND

Twitter engagement between surgeons provides opportunities for international discussion of research and clinical practice. Understanding how surgical tweet chats work is important at a time when increasing reliance is being placed on virtual engagement because of the COVID-19 pandemic.

METHODS

Individual tweets from the May 2019 #BJSConnect tweet chat were extracted using NodeXL, complemented by Twitter searches in an internet browser to identify responses that had not used the hashtag. Aggregate estimates of tweet views were obtained from a third-party social media tool (Twitonomy) and compared with official Twitter Analytics measurements.

RESULTS

In total 37 Twitter accounts posted 248 tweets or replies relating to the tweet chat. A further 110 accounts disseminated the tweets via retweeting. Only 58.5 per cent of these tweets and 35 per cent of the tweeters were identified through a search for the #BJSConnect hashtag. The rest were identified by searching for replies (61), quoting tweets (20), and posts by @BJSurgery that used the hashtag but did not appear in the Twitter search (22). Studying all tweets revealed complex branching discussions that went beyond the discussed paper's findings. Third-party estimates of potential reach of the tweet chat were greatly exaggerated.

CONCLUSION

Understanding the extent of the discussion generated by the #BJSConnect tweet chat required looking beyond the hashtag to identify replies and other responses, which was time-consuming. Estimates of reach using a third-party tool were unreliable.

摘要

背景

外科医生之间在 Twitter 上的互动为研究和临床实践的国际讨论提供了机会。在 COVID-19 大流行期间,由于越来越依赖虚拟互动,了解外科医生推文聊天的工作方式变得尤为重要。

方法

使用 NodeXL 提取 2019 年 5 月#BJSConnect 推文聊天的个人推文,并在互联网浏览器中进行 Twitter 搜索以识别未使用主题标签的回复,以此作为补充。从第三方社交媒体工具(Twitonomy)获取推文视图的汇总估计,并将其与官方 Twitter Analytics 测量结果进行比较。

结果

共有 37 个 Twitter 账户发布了 248 条推文或回复,与推文聊天相关。另有 110 个账户通过转发来传播这些推文。通过搜索#BJSConnect 标签,仅识别出这些推文的 58.5%和 35%的发推者。其余的是通过搜索回复(61)、引用推文(20)以及使用标签但未出现在 Twitter 搜索中的@BJSurgery 帖子(22)识别的。研究所有推文揭示了超出所讨论论文发现的复杂分支讨论。对推文聊天潜在覆盖范围的第三方估计严重夸大。

结论

要了解#BJSConnect 推文聊天产生的讨论程度,需要超越标签来识别回复和其他回复,这很耗时。使用第三方工具进行的覆盖范围估计不可靠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ded5/7944507/8585280b4847/zraa019f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验