Ali Urooj, Makhdoom Syeda Izma, Javed Muhammad Uzair, Khan Rafia Ali, Naveed Muhammad, Abbasi Bilal Haider, Aziz Tariq, Alshehri Fatma, Al-Asmari Fahad, Al-Joufi Fakhria A, Alwethaynani Maher S
Department of Biotechnology, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
Faculty of Life and Environmental Sciences, School of Science, The University of Sydney, Camperdown, Sydney, NSW, 2050, Australia.
Sci Rep. 2025 Feb 27;15(1):7016. doi: 10.1038/s41598-025-90675-z.
Diabetes, affecting over 10.5% of the global population, leads to severe health complications and economic burdens, highlighting the urgent need for effective therapeutic approaches. Current treatments are often insufficient, prompting the exploration of novel therapeutic agents and delivery mechanisms. This study addresses this gap by investigating the roles of L-arginine (identified as a target drug candidate through network pharmacology) in diabetes management, while also evaluating lipid nanocarriers synthesized from fenugreek seed oil for improved drug delivery. Our docking analyses revealed L-arginine's strong interactions with diabetes-target genes (CYP1A2, CYP2C19, and NFKB), with multiple hydrogen bonds and binding energies ranging from - 7.2 to - 8.9 kcal/mol. Encapsulated L-arginine lipid nanoparticles were characterized using UV-Visible spectroscopy, showing absorbance peaks at 415 nm for simple nanoparticles and 521 nm for L-arginine-loaded nanoparticles. Scanning electron microscopy confirmed an average nanoparticle size of 100.2 nm, and zeta potential analysis indicated a neutral surface charge (- 9.37 mV). Antioxidative activity showed 84.44% inhibition with an IC50 value of 40.5 µg/mL The nanoparticles inhibited albumin denaturation by 81.10% and alpha-amylase by 89.30%, surpassing metformin (78.43% at 1000 µg/mL). Hemolysis percentage was minimal at 10.54%. These findings demonstrate the potential of L-arginine as an anti-diabetic agent and highlight the efficacy of lipid nanocarriers as innovative drug delivery systems, providing a foundation for advancing therapeutic interventions against diabetes.
糖尿病影响着全球超过10.5%的人口,会导致严重的健康并发症和经济负担,凸显了对有效治疗方法的迫切需求。当前的治疗方法往往并不充分,这促使人们探索新型治疗药物和给药机制。本研究通过调查L-精氨酸(通过网络药理学确定为候选靶标药物)在糖尿病管理中的作用来填补这一空白,同时还评估了由胡芦巴籽油合成的脂质纳米载体,以改善药物递送。我们的对接分析显示L-精氨酸与糖尿病靶基因(CYP1A2、CYP2C19和NFKB)有强烈的相互作用,存在多个氢键,结合能在-7.2至-8.9千卡/摩尔之间。使用紫外可见光谱对包封的L-精氨酸脂质纳米颗粒进行了表征,简单纳米颗粒在415纳米处有吸收峰,负载L-精氨酸的纳米颗粒在521纳米处有吸收峰。扫描电子显微镜证实纳米颗粒的平均尺寸为100.2纳米,zeta电位分析表明表面电荷呈中性(-9.37毫伏)。抗氧化活性显示抑制率为84.44%,IC50值为40.5微克/毫升。纳米颗粒对白蛋白变性的抑制率为81.10%,对α-淀粉酶的抑制率为89.30%,超过了二甲双胍(1000微克/毫升时为78.43%)。溶血率最低为10.54%。这些发现证明了L-精氨酸作为抗糖尿病药物的潜力,并突出了脂质纳米载体作为创新药物递送系统的功效,为推进糖尿病治疗干预措施奠定了基础。