Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain.
Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Departament de Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain.
Int J Mol Sci. 2022 Feb 23;23(5):2456. doi: 10.3390/ijms23052456.
Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature () than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher , we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari-Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari-Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.
无定形分子-大分子混合物在聚合物技术中无处不在,是开发无定形药物制剂最常用的方法之一。对于这些应用,了解制备方法如何影响混合物的性质至关重要。在这里,我们使用差示扫描量热法和宽带介电谱研究了小分子量药物(安定类抗焦虑药)在可生物降解的聚乳酸中的分散体,这两种物质的形式都是溶剂浇铸薄膜和电纺微纤维。我们表明,同一种小分子化合物的分散体可以根据制备方法、温度和聚合物对映异构体对生物聚合物的链段运动产生相反的(塑化或抗塑化)影响。我们比较了两种不同的聚合物手性形式,即对映体纯、半结晶 L-聚合物(PLLA)和含有 L 和 D 单体的无规、完全无定形共聚物(PDLLA),这两种聚合物的玻璃化转变温度(Tg)都低于药物。虽然药物对薄膜有较弱的抗塑化作用,与它较高的Tg一致,但我们发现它实际上是 PLLA 微纤维的塑化剂,在 30%重量药物负载下,将其Tg降低多达 14 K,即降低到低于完全无定形薄膜的Tg。样品的结构弛豫时间同样取决于化学成分和形态。大多数混合物显示出单一的结构弛豫,这与均匀样品一致。在 PLLA 微纤维中,结晶区的存在增加了无定形部分的结构弛豫时间,而药物的存在降低了微纤维中(部分拉伸)链的结构弛豫时间,使链的流动性大大高于完全无定形聚合物基质。即使是完全无定形的均匀混合物也表现出两个不同的 Johari-Goldstein 松弛过程,每个化学组分一个。我们的发现对 Johari-Goldstein 过程的解释以及具有小分子添加剂的微纤维的物理稳定性和机械性能都有重要的意义。