Suppr超能文献

拉美地区心脏手术风险:机器学习模型与 EuroSCORE-II 的比较。

Cardiac Operative Risk in Latin America: A Comparison of Machine Learning Models vs EuroSCORE-II.

机构信息

Cardiovascular Surgical Department, Clinica Universitaria Colombia, Bogotá, Colombia.

Cardiovascular Surgical Department, Clinica Universitaria Colombia, Bogotá, Colombia.

出版信息

Ann Thorac Surg. 2022 Jan;113(1):92-99. doi: 10.1016/j.athoracsur.2021.02.052. Epub 2021 Mar 6.

Abstract

BACKGROUND

Machine learning is a useful tool for predicting medical outcomes. This study aimed to develop a machine learning-based preoperative score to predict cardiac surgical operative mortality.

METHODS

We developed various models to predict cardiac operative mortality using machine learning techniques and compared each model to European System for Cardiac Operative Risk Evaluation-II (EuroSCORE-II) using the area under the receiver operating characteristic (ROC) and precision-recall (PR) curves (ROC AUC and PR AUC) as performance metrics. The model calibration in our population was also reported with all models and in high-risk groups for gradient boosting and EuroSCORE-II. This study is a retrospective cohort based on a prospectively collected database from July 2008 to April 2018 from a single cardiac surgical center in Bogotá, Colombia.

RESULTS

Model comparison consisted of hold-out validation: 80% of the data were used for model training, and the remaining 20% of the data were used to test each model and EuroSCORE-II. Operative mortality was 6.45% in the entire database and 6.59% in the test set. The performance metrics for the best machine learning model, gradient boosting (ROC: 0.755; PR: 0.292), were higher than those of EuroSCORE-II (ROC: 0.716, PR: 0.179), with a P value of .318 for the AUC of the ROC and .137 for the AUC of the PR.

CONCLUSIONS

The gradient boosting model was more precise than EuroSCORE-II in predicting mortality in our population based on ROC and PR analyses, although the difference was not statistically significant.

摘要

背景

机器学习是预测医疗结果的有用工具。本研究旨在开发一种基于机器学习的术前评分,以预测心脏手术的手术死亡率。

方法

我们使用机器学习技术开发了各种模型来预测心脏手术死亡率,并使用接收者操作特征(ROC)曲线和精度-召回(PR)曲线下的面积(ROC AUC 和 PR AUC)将每个模型与欧洲心脏手术风险评估系统-II(EuroSCORE-II)进行比较,作为性能指标。还报告了所有模型以及在梯度提升和 EuroSCORE-II 的高危组中的模型校准情况。本研究是基于 2008 年 7 月至 2018 年 4 月哥伦比亚波哥大的一家心脏外科中心前瞻性收集的数据库的回顾性队列研究。

结果

模型比较包括留一验证:80%的数据用于模型训练,其余 20%的数据用于测试每个模型和 EuroSCORE-II。整个数据库的手术死亡率为 6.45%,测试集中为 6.59%。最佳机器学习模型(梯度提升)的性能指标(ROC:0.755;PR:0.292)高于 EuroSCORE-II(ROC:0.716,PR:0.179),ROC 的 AUC 的 P 值为.318,PR 的 AUC 的 P 值为.137。

结论

基于 ROC 和 PR 分析,梯度提升模型在预测我们人群中的死亡率方面比 EuroSCORE-II 更准确,尽管差异无统计学意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验