Jaeger Martin G, Winter Georg E
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
Mol Cell. 2021 Apr 15;81(8):1617-1630. doi: 10.1016/j.molcel.2021.02.015. Epub 2021 Mar 8.
Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.
多维组学分析不断揭示细胞过程的复杂性。由于对缓慢扰动诱导的表型进行机制解释困难,快速实验设置越来越多地用于直接剖析细胞中的因果相互作用。在此,我们综述了越来越多利用快速药理学扰动来阐明基因控制中的因果关系的研究。当与动力学匹配的读数相结合时,快速化学遗传工具能够在混淆的二次效应显现之前记录主要表型。该工具箱包括直接作用的探针,如活性位点抑制剂和蛋白酶靶向嵌合体,以及利用基因工程使靶蛋白具有化学可处理性的策略,如模拟敏感和降解子系统。我们预计,将这些概念外推到单细胞设置将在未来进一步改变我们对转录控制的机制理解。重要的是,利用速度来推导因果关系的概念应该广泛适用于生物调节的许多方面。