Suppr超能文献

与单个细胞和汇合细胞相比,处于成熟分层上皮层中的人乳腺上皮细胞会变扁平且变硬。

Human mammary epithelial cells in a mature, stratified epithelial layer flatten and stiffen compared to single and confluent cells.

作者信息

Lee Hyunsu, Bonin Keith, Guthold Martin

机构信息

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA.

出版信息

Biochim Biophys Acta Gen Subj. 2021 Jun;1865(6):129891. doi: 10.1016/j.bbagen.2021.129891. Epub 2021 Mar 6.

Abstract

BACKGROUND

The epithelium forms a protective barrier against external biological, chemical and physical insults. So far, AFM-based, micro-mechanical measurements have only been performed on single cells and confluent cells, but not yet on cells in mature layers.

METHODS

Using a combination of atomic force, fluorescence and confocal microscopy, we determined the changes in stiffness, morphology and actin distribution of human mammary epithelial cells (HMECs) as they transition from single cells to confluency to a mature layer.

RESULTS

Single HMECs have a tall, round (planoconvex) morphology, have actin stress fibers at the base, have diffuse cortical actin, and have a stiffness of 1 kPa. Confluent HMECs start to become flatter, basal actin stress fibers start to disappear, and actin accumulates laterally where cells abut. Overall stiffness is still 1 kPa with two-fold higher stiffness in the abutting regions. As HMECs mature and form multilayered structures, cells on apical surfaces become flatter (apically more level), wider, and seven times stiffer (mean, 7 kPa) than single and confluent cells. The main drivers of these changes are actin filaments, as cells show strong actin accumulation in the regions where cells adjoin, and in the apical regions.

CONCLUSIONS

HMECs stiffen, flatten and redistribute actin upon transiting from single cells to mature, confluent layers.

GENERAL SIGNIFICANCE

Our findings advance the understanding of breast ductal morphogenesis and mechanical homeostasis.

摘要

背景

上皮细胞形成了一道抵御外部生物、化学和物理损伤的保护屏障。到目前为止,基于原子力显微镜的微机械测量仅在单细胞和汇合细胞上进行过,尚未在成熟层的细胞上进行。

方法

我们结合原子力显微镜、荧光显微镜和共聚焦显微镜,测定了人乳腺上皮细胞(HMECs)从单细胞转变为汇合细胞再到成熟层过程中其硬度、形态和肌动蛋白分布的变化。

结果

单个HMECs呈高而圆(平凸透镜状)的形态,基部有肌动蛋白应力纤维,皮质肌动蛋白呈弥漫状,硬度为1kPa。汇合的HMECs开始变得更扁平,基部的肌动蛋白应力纤维开始消失,肌动蛋白在细胞邻接处侧向积累。整体硬度仍为1kPa,但邻接区域的硬度高出两倍。随着HMECs成熟并形成多层结构,顶端表面的细胞变得更扁平(顶端更平整)、更宽,且比单细胞和汇合细胞硬七倍(平均为7kPa)。这些变化的主要驱动因素是肌动蛋白丝,因为细胞在细胞邻接区域和顶端区域显示出强烈的肌动蛋白积累。

结论

HMECs从单细胞转变为成熟的汇合层时会变硬、变扁平并重新分布肌动蛋白。

普遍意义

我们的研究结果推进了对乳腺导管形态发生和机械稳态的理解。

相似文献

1
Human mammary epithelial cells in a mature, stratified epithelial layer flatten and stiffen compared to single and confluent cells.
Biochim Biophys Acta Gen Subj. 2021 Jun;1865(6):129891. doi: 10.1016/j.bbagen.2021.129891. Epub 2021 Mar 6.
3
Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
Acta Biomater. 2017 Jun;55:239-248. doi: 10.1016/j.actbio.2017.04.006. Epub 2017 Apr 7.
4
From single cells to tissues: interactions between the matrix and human breast cells in real time.
PLoS One. 2014 Apr 1;9(4):e93325. doi: 10.1371/journal.pone.0093325. eCollection 2014.
5
CREB-binding protein regulates apoptosis and growth of HMECs grown in reconstituted ECM via laminin-5.
J Cell Sci. 2005 Nov 1;118(Pt 21):5005-22. doi: 10.1242/jcs.02616. Epub 2005 Oct 11.
7
Cellular transformation of human mammary epithelial cells by SATB2.
Stem Cell Res. 2017 Mar;19:139-147. doi: 10.1016/j.scr.2017.01.011. Epub 2017 Feb 1.
8
Mechanical and morphological response of confluent epithelial cell layers to reinforcement and dissolution of the F-actin cytoskeleton.
Prog Biophys Mol Biol. 2019 Jul;144:77-90. doi: 10.1016/j.pbiomolbio.2018.08.010. Epub 2018 Sep 7.
9
Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology.
Exp Cell Res. 2016 Oct 15;348(1):46-55. doi: 10.1016/j.yexcr.2016.08.025. Epub 2016 Aug 31.
10
Actin cytoskeleton stiffness grades metastatic potential of ovarian carcinoma Hey A8 cells via nanoindentation mapping.
J Biomech. 2017 Jul 26;60:219-226. doi: 10.1016/j.jbiomech.2017.06.040. Epub 2017 Jul 5.

本文引用的文献

1
Effects of energy metabolism on the mechanical properties of breast cancer cells.
Commun Biol. 2020 Oct 20;3(1):590. doi: 10.1038/s42003-020-01330-4.
3
Prestress and Area Compressibility of Actin Cortices Determine the Viscoelastic Response of Living Cells.
Phys Rev Lett. 2020 Aug 7;125(6):068101. doi: 10.1103/PhysRevLett.125.068101.
4
Measuring viscoelasticity of soft biological samples using atomic force microscopy.
Soft Matter. 2020 Jan 7;16(1):64-81. doi: 10.1039/c9sm01020c. Epub 2019 Nov 13.
5
Microtubule disruption changes endothelial cell mechanics and adhesion.
Sci Rep. 2019 Oct 17;9(1):14903. doi: 10.1038/s41598-019-51024-z.
6
Cellular nanoscale stiffness patterns governed by intracellular forces.
Nat Mater. 2019 Oct;18(10):1071-1077. doi: 10.1038/s41563-019-0391-7. Epub 2019 Jun 17.
7
Stiffness of MDCK II Cells Depends on Confluency and Cell Size.
Biophys J. 2019 Jun 4;116(11):2204-2211. doi: 10.1016/j.bpj.2019.04.028. Epub 2019 May 16.
8
Spontaneous Spatial Correlation of Elastic Modulus in Jammed Epithelial Monolayers Observed by AFM.
Biophys J. 2019 Mar 19;116(6):1152-1158. doi: 10.1016/j.bpj.2019.01.037. Epub 2019 Feb 5.
9
The actin cortex at a glance.
J Cell Sci. 2018 Jul 19;131(14):jcs186254. doi: 10.1242/jcs.186254.
10
The Epithelial Circumferential Actin Belt Regulates YAP/TAZ through Nucleocytoplasmic Shuttling of Merlin.
Cell Rep. 2017 Aug 8;20(6):1435-1447. doi: 10.1016/j.celrep.2017.07.032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验