MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
J Cell Sci. 2018 Jul 19;131(14):jcs186254. doi: 10.1242/jcs.186254.
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis.
精确控制的细胞变形是细胞迁移、分裂和组织形态发生的关键,并且在发育过程中的细胞分化以及癌症进展中都有涉及。在动物细胞中,形状变化主要由细胞皮层驱动,细胞皮层是一层薄薄的肌动球蛋白网络,直接位于质膜下方。肌球蛋白产生的力在皮层网络中产生张力,张力梯度导致细胞变形。最近的研究通过逐步揭示皮层的组成和组织,为皮层张力的分子控制提供了重要的见解。在这篇《细胞科学一览》文章和随附的海报中,我们回顾了我们目前对皮层组成和结构的理解。然后,我们讨论了皮层的微观特性如何控制皮层张力。虽然仍有许多悬而未决的问题,但现在很清楚,皮层张力可以通过皮层的组成和组织来调节,为细胞和组织形态发生过程中这一关键细胞特性提供了多个调节层次。