Suppr超能文献

束路径学习:一种用于脑束定量分析的测地线学习框架。

TractLearn: A geodesic learning framework for quantitative analysis of brain bundles.

机构信息

Neuroradiology and MRI, Grenoble Alpes University Hospital, Grenoble, France; School of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006, Australia.

Neuroradiology and MRI, Grenoble Alpes University Hospital, Grenoble, France.

出版信息

Neuroimage. 2021 Jun;233:117927. doi: 10.1016/j.neuroimage.2021.117927. Epub 2021 Mar 6.

Abstract

Deep learning-based convolutional neural networks have recently proved their efficiency in providing fast segmentation of major brain fascicles structures, based on diffusion-weighted imaging. The quantitative analysis of brain fascicles then relies on metrics either coming from the tractography process itself or from each voxel along the bundle. Statistical detection of abnormal voxels in the context of disease usually relies on univariate and multivariate statistics models, such as the General Linear Model (GLM). Yet in the case of high-dimensional low sample size data, the GLM often implies high standard deviation range in controls due to anatomical variability, despite the commonly used smoothing process. This can lead to difficulties to detect subtle quantitative alterations from a brain bundle at the voxel scale. Here we introduce TractLearn, a unified framework for brain fascicles quantitative analyses by using geodesic learning as a data-driven learning task. TractLearn allows a mapping between the image high-dimensional domain and the reduced latent space of brain fascicles using a Riemannian approach. We illustrate the robustness of this method on a healthy population with test-retest acquisition of multi-shell diffusion MRI data, demonstrating that it is possible to separately study the global effect due to different MRI sessions from the effect of local bundle alterations. We have then tested the efficiency of our algorithm on a sample of 5 age-matched subjects referred with mild traumatic brain injury. Our contributions are to propose: 1/ A manifold approach to capture controls variability as standard reference instead of an atlas approach based on a Euclidean mean. 2/ A tool to detect global variation of voxels' quantitative values, which accounts for voxels' interactions in a structure rather than analyzing voxels independently. 3/ A ready-to-plug algorithm to highlight nonlinear variation of diffusion MRI metrics. With this regard, TractLearn is a ready-to-use algorithm for precision medicine.

摘要

基于扩散加权成像的深度学习卷积神经网络最近在提供大脑主要束结构的快速分割方面证明了其效率。然后,大脑束的定量分析依赖于来自束追踪过程本身的指标或沿着束的每个体素的指标。在疾病背景下,异常体素的统计检测通常依赖于单变量和多变量统计模型,例如广义线性模型 (GLM)。然而,在高维小样本量数据的情况下,由于解剖学变异性,GLM 通常会导致对照组的标准偏差范围很高,尽管使用了常用的平滑处理。这可能导致难以从体素尺度上检测到大脑束的细微定量变化。在这里,我们引入了 TractLearn,这是一种用于通过测地线学习作为数据驱动的学习任务进行大脑束定量分析的统一框架。TractLearn 使用黎曼方法在图像高维域和大脑束的简化潜在空间之间进行映射。我们通过对多壳扩散 MRI 数据的测试 - 重测采集,在健康人群中证明了该方法的稳健性,证明了可以分别研究由于不同 MRI 会话引起的全局效应以及局部束改变的效应。然后,我们在 5 名年龄匹配的轻度创伤性脑损伤患者的样本上测试了我们算法的效率。我们的贡献是提出:1/ 一种流形方法来捕获作为标准参考的控制变异性,而不是基于欧几里得均值的图谱方法。2/ 一种用于检测体素定量值全局变化的工具,它考虑了结构中体素的相互作用,而不是独立分析体素。3/ 一种用于突出扩散 MRI 指标非线性变化的即用型算法。就此而言,TractLearn 是一种用于精准医疗的即用型算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验