Suppr超能文献

一种基于机器学习的方法,用于估计扩散加权磁共振成像中主要束的数量和方向。

A machine learning-based method for estimating the number and orientations of major fascicles in diffusion-weighted magnetic resonance imaging.

机构信息

Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Pediatrics at Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Med Image Anal. 2021 Aug;72:102129. doi: 10.1016/j.media.2021.102129. Epub 2021 Jun 3.

Abstract

Accurate modeling of diffusion-weighted magnetic resonance imaging measurements is necessary for accurate brain connectivity analysis. Existing methods for estimating the number and orientations of fascicles in an imaging voxel either depend on non-convex optimization techniques that are sensitive to initialization and measurement noise, or are prone to predicting spurious fascicles. In this paper, we propose a machine learning-based technique that can accurately estimate the number and orientations of fascicles in a voxel. Our method can be trained with either simulated or real diffusion-weighted imaging data. Our method estimates the angle to the closest fascicle for each direction in a set of discrete directions uniformly spread on the unit sphere. This information is then processed to extract the number and orientations of fascicles in a voxel. On realistic simulated phantom data with known ground truth, our method predicts the number and orientations of crossing fascicles more accurately than several classical and machine learning methods. It also leads to more accurate tractography. On real data, our method is better than or compares favorably with other methods in terms of robustness to measurement down-sampling and also in terms of expert quality assessment of tractography results.

摘要

准确建模扩散加权磁共振成像测量对于准确的脑连接分析是必要的。现有的用于估计成像体素中束的数量和方向的方法要么依赖于对初始化和测量噪声敏感的非凸优化技术,要么容易预测虚假束。在本文中,我们提出了一种基于机器学习的技术,可以准确估计体素中束的数量和方向。我们的方法可以用模拟或真实的扩散加权成像数据进行训练。我们的方法估计了在单位球上均匀分布的一组离散方向中每个方向到最近束的角度。然后,这些信息被处理以提取体素中束的数量和方向。在具有已知真实值的现实模拟幻像数据上,我们的方法比几种经典和机器学习方法更准确地预测了交叉束的数量和方向。它还导致更准确的轨迹追踪。在真实数据上,我们的方法在测量下采样的鲁棒性方面以及在轨迹追踪结果的专家质量评估方面都优于或优于其他方法。

相似文献

6
AxTract: Toward microstructure informed tractography.AxTract:走向基于微观结构信息的束追踪。
Hum Brain Mapp. 2017 Nov;38(11):5485-5500. doi: 10.1002/hbm.23741. Epub 2017 Aug 2.
7
COMMIT: Convex optimization modeling for microstructure informed tractography.提交:基于微观结构信息束追踪的凸优化建模。
IEEE Trans Med Imaging. 2015 Jan;34(1):246-57. doi: 10.1109/TMI.2014.2352414. Epub 2014 Aug 27.

引用本文的文献

2
Diffusion MRI with Machine Learning.结合机器学习的扩散磁共振成像
Imaging Neurosci (Camb). 2024;2. doi: 10.1162/imag_a_00353. Epub 2024 Nov 12.
4
Fast multi-compartment Microstructure Fingerprinting in brain white matter.脑白质中的快速多室微结构指纹识别
Front Neurosci. 2024 Jul 19;18:1400499. doi: 10.3389/fnins.2024.1400499. eCollection 2024.
6
High-angular resolution diffusion imaging generation using 3d u-net.基于 3d U-Net 的高角度分辨率扩散成像生成。
Neuroradiology. 2024 Mar;66(3):371-387. doi: 10.1007/s00234-024-03282-6. Epub 2024 Jan 18.

本文引用的文献

1
Enabling Multi-Shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE.通过深度SHORE实现数据驱动扩散模型的多壳b值通用性
Med Image Comput Comput Assist Interv. 2019 Oct;11766:573-581. doi: 10.1007/978-3-030-32248-9_64. Epub 2019 Oct 10.
6
Tractography and machine learning: Current state and open challenges.束流追踪与机器学习:现状与开放性挑战。
Magn Reson Imaging. 2019 Dec;64:37-48. doi: 10.1016/j.mri.2019.04.013. Epub 2019 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验