Suppr超能文献

基于石墨烯激发的塔姆共振对生物传感器进行建模。

Modeling of a biosensor using Tamm resonance excited by graphene.

作者信息

Zaky Zaky A, Aly Arafa H

出版信息

Appl Opt. 2021 Feb 10;60(5):1411-1419. doi: 10.1364/AO.412896.

Abstract

In this paper, nanoscale pores in silicon layers are exploited to model and optimize a one-dimensional hybrid graphene-porous silicon photonic crystal biosensor. The physical nature of the proposed sensor is based on Tamm resonance. The transfer matrix method is applied to detect the change of the index of refraction in an aqueous solution. The proposed model is (/)//, in which and are porous silicon layers with different porosities, N is the number of periods, and G is the number of graphene layers. The numerical simulations show that the proposed sensor has good performance. The variation of the number of periods, number of graphene layers, porosities, thicknesses of silicon layers, incident angles, and the sample layer thickness affect the performance of the sensor. By varying these parameters, the sensitivity and figure of merit of the sensor can be controlled. The study shows that the sensitivity and figure of merit of the proposed sensor reach 4.75 THz/RIU and 475, respectively. The proposed sensor has a good capability in biological detection within terahertz. It is the first time, to our knowledge, that graphene has been used to excite the Tamm resonance using the photonic crystal of porous silicon and using it in biosensing applications.

摘要

在本文中,利用硅层中的纳米级孔隙来建模和优化一维混合石墨烯-多孔硅光子晶体生物传感器。所提出传感器的物理本质基于塔姆共振。应用传输矩阵法来检测水溶液中折射率的变化。所提出的模型为(/)//,其中和是具有不同孔隙率的多孔硅层,N是周期数,G是石墨烯层数。数值模拟表明所提出的传感器具有良好的性能。周期数、石墨烯层数、孔隙率、硅层厚度、入射角以及样品层厚度的变化会影响传感器的性能。通过改变这些参数,可以控制传感器的灵敏度和品质因数。研究表明,所提出传感器的灵敏度和品质因数分别达到4.75太赫兹/折射率单位和475。所提出的传感器在太赫兹波段具有良好的生物检测能力。据我们所知,这是首次将石墨烯用于利用多孔硅光子晶体激发塔姆共振并将其应用于生物传感。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验