Suppr超能文献

在进行中的临床试验中增加新手臂时的统计学考虑:潜力与警示。

Statistical consideration when adding new arms to ongoing clinical trials: the potentials and the caveats.

机构信息

MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SR, UK.

Pragmatic Clinical Trials Unit, Queen Mary University of London, Yvonne Carter Building, 58 Turner Street, London, E1 2AB, UK.

出版信息

Trials. 2021 Mar 10;22(1):203. doi: 10.1186/s13063-021-05150-7.

Abstract

BACKGROUND

Platform trials improve the efficiency of the drug development process through flexible features such as adding and dropping arms as evidence emerges. The benefits and practical challenges of implementing novel trial designs have been discussed widely in the literature, yet less consideration has been given to the statistical implications of adding arms. MAIN: We explain different statistical considerations that arise from allowing new research interventions to be added in for ongoing studies. We present recent methodology development on addressing these issues and illustrate design and analysis approaches that might be enhanced to provide robust inference from platform trials. We also discuss the implication of changing the control arm, how patient eligibility for different arms may complicate the trial design and analysis, and how operational bias may arise when revealing some results of the trials. Lastly, we comment on the appropriateness and the application of platform trials in phase II and phase III settings, as well as publicly versus industry-funded trials.

CONCLUSION

Platform trials provide great opportunities for improving the efficiency of evaluating interventions. Although several statistical issues are present, there are a range of methods available that allow robust and efficient design and analysis of these trials.

摘要

背景

平台试验通过灵活的功能(如根据证据增加或删除试验组)提高药物开发过程的效率。在文献中已经广泛讨论了实施新型试验设计的益处和实际挑战,但对于增加试验组的统计学意义考虑较少。

主要内容

我们解释了允许新的研究干预措施加入正在进行的研究中所产生的不同统计考虑因素。我们介绍了最近在解决这些问题方面的方法学进展,并说明了可能会增强设计和分析方法的方法,以便从平台试验中提供稳健的推断。我们还讨论了改变对照组的影响,不同试验组的患者入选标准可能使试验设计和分析复杂化,以及当揭示试验的某些结果时可能出现操作偏差。最后,我们评论了平台试验在 II 期和 III 期研究中的适用性和应用,以及公开资助和行业资助试验的适用性。

结论

平台试验为提高干预措施评估的效率提供了很好的机会。尽管存在一些统计学问题,但有一系列方法可用于稳健且高效地设计和分析这些试验。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Controlled multi-arm platform design using predictive probability.采用预测概率的对照多臂平台设计
Stat Methods Med Res. 2018 Jan;27(1):65-78. doi: 10.1177/0962280215620696. Epub 2016 Jan 12.

引用本文的文献

7
Optimal allocation strategies in platform trials with continuous endpoints.具有连续终点的平台试验中的最优分配策略。
Stat Methods Med Res. 2024 May;33(5):858-874. doi: 10.1177/09622802241239008. Epub 2024 Mar 20.
8
Online error rate control for platform trials.在线平台试验的误差率控制。
Stat Med. 2023 Jun 30;42(14):2475-2495. doi: 10.1002/sim.9733. Epub 2023 Apr 2.
9
Design and analysis of umbrella trials: Where do we stand?伞形试验的设计与分析:我们目前的进展如何?
Front Med (Lausanne). 2022 Oct 12;9:1037439. doi: 10.3389/fmed.2022.1037439. eCollection 2022.

本文引用的文献

9
Resist the Temptation of Response-Adaptive Randomization.抵制回应自适应随机化的诱惑。
Clin Infect Dis. 2020 Dec 31;71(11):3002-3004. doi: 10.1093/cid/ciaa334.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验