School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an, Shaanxi 710049, China.
State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Sci Transl Med. 2021 Mar 10;13(584). doi: 10.1126/scitranslmed.aaw9668.
The therapeutic goal for autoimmune diseases is disease antigen-specific immune tolerance without nonspecific immune suppression. However, it is a challenge to induce antigen-specific immune tolerance in a dysregulated immune system. In this study, we developed immune-homeostatic microparticles (IHMs) that treat multiple mouse models of autoimmunity via induction of apoptosis in activated T cells and reestablishment of regulatory T cells. Specifically, in an experimental model of colitis, IHMs rapidly released monocyte chemotactic protein-1 after intravenous administration, which recruited activated T cells and then induced their apoptosis by conjugated Fas ligand on the IHM surface. This triggered professional macrophages to ingest apoptotic T cells and produce high quantities of transforming growth factor-β, which drove regulatory T cell differentiation. Furthermore, the modular design of IHMs allowed IHMs to be engineered with the autoantigen peptides that can reduce disease in an experimental autoimmune encephalomyelitis mouse model and a nonobese diabetic mouse model. This was accomplished by sustained release of the autoantigens after induction of T cell apoptosis and transforming growth factor-β production by macrophages, which promoted to establish an immune tolerant environment. Thus, IHMs may be an efficient therapeutic strategy for autoimmune diseases through induction of apoptosis and reestablishment of tolerant immune responses.
自身免疫性疾病的治疗目标是在不进行非特异性免疫抑制的情况下实现疾病抗原特异性免疫耐受。然而,在失调的免疫系统中诱导抗原特异性免疫耐受是一个挑战。在这项研究中,我们开发了免疫稳态微粒(IHM),通过在活化的 T 细胞中诱导细胞凋亡并重建调节性 T 细胞来治疗多种自身免疫性小鼠模型。具体来说,在结肠炎的实验模型中,IHM 在静脉给药后迅速释放单核细胞趋化蛋白-1,募集活化的 T 细胞,然后通过 IHM 表面上的共轭 Fas 配体诱导其凋亡。这引发了专业巨噬细胞吞噬凋亡的 T 细胞,并产生大量转化生长因子-β,从而驱动调节性 T 细胞分化。此外,IHM 的模块化设计允许用自身抗原肽对 IHM 进行工程改造,从而在实验性自身免疫性脑脊髓炎小鼠模型和非肥胖型糖尿病小鼠模型中减轻疾病。这是通过诱导 T 细胞凋亡和巨噬细胞产生转化生长因子-β后持续释放自身抗原来实现的,这促进了建立免疫耐受环境。因此,通过诱导细胞凋亡和重建耐受免疫反应,IHM 可能成为治疗自身免疫性疾病的有效治疗策略。