Suppr超能文献

一种使用无创临床参数的个体化拉莫三嗪剂量调整的机器学习方法。

A machine learning approach to personalized dose adjustment of lamotrigine using noninvasive clinical parameters.

机构信息

Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, 510370, China.

Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, 510370, China.

出版信息

Sci Rep. 2021 Mar 10;11(1):5568. doi: 10.1038/s41598-021-85157-x.

Abstract

The pharmacokinetic variability of lamotrigine (LTG) plays a significant role in its dosing requirements. Our goal here was to use noninvasive clinical parameters to predict the dose-adjusted concentrations (C/D ratio) of LTG based on machine learning (ML) algorithms. A total of 1141 therapeutic drug-monitoring measurements were used, 80% of which were randomly selected as the "derivation cohort" to develop the prediction algorithm, and the remaining 20% constituted the "validation cohort" to test the finally selected model. Fifteen ML models were optimized and evaluated by tenfold cross-validation on the "derivation cohort," and were filtered by the mean absolute error (MAE). On the whole, the nonlinear models outperformed the linear models. The extra-trees' regression algorithm delivered good performance, and was chosen to establish the predictive model. The important features were then analyzed and parameters of the model adjusted to develop the best prediction model, which accurately described the C/D ratio of LTG, especially in the intermediate-to-high range (≥ 22.1 μg mL g day), as illustrated by a minimal bias (mean relative error (%) =  + 3%), good precision (MAE = 8.7 μg mL g day), and a high percentage of predictions within ± 20% of the empirical values (60.47%). This is the first study, to the best of our knowledge, to use ML algorithms to predict the C/D ratio of LTG. The results here can help clinicians adjust doses of LTG administered to patients to minimize adverse reactions.

摘要

拉莫三嗪(LTG)的药代动力学变异性在其剂量需求中起着重要作用。我们的目标是使用非侵入性临床参数,基于机器学习(ML)算法预测 LTG 的剂量调整浓度(C/D 比值)。共使用了 1141 次治疗药物监测测量值,其中 80%随机选择作为“推导队列”来开发预测算法,其余 20%构成“验证队列”来测试最终选择的模型。在“推导队列”上,通过 10 倍交叉验证优化和评估了 15 个 ML 模型,并通过平均绝对误差(MAE)进行过滤。总的来说,非线性模型优于线性模型。随机森林回归算法表现良好,被选择来建立预测模型。然后分析重要特征并调整模型参数以开发最佳预测模型,该模型准确描述了 LTG 的 C/D 比值,尤其是在中至高范围(≥22.1μg mL g day),表现出最小的偏差(平均相对误差(%)=+3%)、良好的精度(MAE=8.7μg mL g day)和高比例的预测值在经验值的±20%范围内(60.47%)。据我们所知,这是首次使用 ML 算法预测 LTG 的 C/D 比值。结果有助于临床医生调整患者的 LTG 剂量,以最大程度地减少不良反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a35/7946912/58e32e25e0c5/41598_2021_85157_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验