CSIRO Aquaculture, CSIRO Agriculture and Food, Castray Esplanade, Hobart, TAS, Australia.
WorldFish, Bayan Lepas, Penang, Malaysia.
Heredity (Edinb). 2021 Jun;126(6):884-895. doi: 10.1038/s41437-021-00421-0. Epub 2021 Mar 10.
The cost of parentage assignment precludes its application in many selective breeding programmes and molecular ecology studies, and/or limits the circumstances or number of individuals to which it is applied. Pooling samples from more than one individual, and using appropriate genetic markers and algorithms to determine parental contributions to pools, is one means of reducing the cost of parentage assignment. This paper describes and validates a novel maximum likelihood (ML) parentage-assignment method, that can be used to accurately assign parentage to pooled samples of multiple individuals-previously published ML methods are applicable to samples of single individuals only-using low-density single nucleotide polymorphism (SNP) 'quantitative' (also referred to as 'continuous') genotype data. It is demonstrated with simulated data that, when applied to pools, this 'quantitative maximum likelihood' method assigns parentage with greater accuracy than established maximum likelihood parentage-assignment approaches, which rely on accurate discrete genotype calls; exclusion methods; and estimating parental contributions to pools by solving the weighted least squares problem. Quantitative maximum likelihood can be applied to pools generated using either a 'pooling-for-individual-parentage-assignment' approach, whereby each individual in a pool is tagged or traceable and from a known and mutually exclusive set of possible parents; or a 'pooling-by-phenotype' approach, whereby individuals of the same, or similar, phenotype/s are pooled. Although computationally intensive when applied to large pools, quantitative maximum likelihood has the potential to substantially reduce the cost of parentage assignment, even if applied to pools comprised of few individuals.
亲权鉴定的成本使其无法应用于许多选择性繁殖计划和分子生态学研究,和/或限制了其应用的情况或个体数量。从多个个体中混合样本,并使用适当的遗传标记和算法来确定对混合样本的亲本贡献,是降低亲权鉴定成本的一种方法。本文描述并验证了一种新的最大似然(ML)亲权鉴定方法,该方法可用于准确鉴定多个个体混合样本的亲权-以前发表的 ML 方法仅适用于单个个体的样本-使用低密度单核苷酸多态性(SNP)“定量”(也称为“连续”)基因型数据。模拟数据表明,当应用于混合样本时,这种“定量最大似然”方法比依赖于准确离散基因型呼叫、排除方法和通过解决加权最小二乘法问题估计混合样本中亲本贡献的既定最大似然亲权鉴定方法具有更高的准确性。定量最大似然可应用于通过“个体亲权鉴定混合”方法或“表型混合”方法生成的混合样本。在前者中,混合样本中的每个个体都有标记或可追溯性,并且来自已知的、相互排斥的可能亲本集合;在后者中,相同或相似表型的个体被混合在一起。尽管当应用于大型混合样本时计算量很大,但即使应用于由少数个体组成的混合样本,定量最大似然也有可能大大降低亲权鉴定的成本。