Suppr超能文献

利用基因组关系可能性进行亲子关系鉴定。

Using genomic relationship likelihood for parentage assignment.

机构信息

AquaGen AS, P.O. Box 1240, NO-7462, Trondheim, Norway.

Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.

出版信息

Genet Sel Evol. 2018 May 18;50(1):26. doi: 10.1186/s12711-018-0397-7.

Abstract

BACKGROUND

Parentage assignment is usually based on a limited number of unlinked, independent genomic markers (microsatellites, low-density single nucleotide polymorphisms (SNPs), etc.). Classical methods for parentage assignment are exclusion-based (i.e. based on loci that violate Mendelian inheritance) or likelihood-based, assuming independent inheritance of loci. For true parent-offspring relations, genotyping errors cause apparent violations of Mendelian inheritance. Thus, the maximum proportion of such violations must be determined, which is complicated by variable call- and genotype error rates among loci and individuals. Recently, genotyping using high-density SNP chips has become available at lower cost and is increasingly used in genetics research and breeding programs. However, dense SNPs are not independently inherited, violating the assumptions of the likelihood-based methods. Hence, parentage assignment usually assumes a maximum proportion of exclusions, or applies likelihood-based methods on a smaller subset of independent markers. Our aim was to develop a fast and accurate trio parentage assignment method for dense SNP data without prior genotyping error- or call rate knowledge among loci and individuals. This genomic relationship likelihood (GRL) method infers parentage by using genomic relationships, which are typically used in genomic prediction models.

RESULTS

Using 50 simulated datasets with 53,427 to 55,517 SNPs, genotyping error rates of 1-3% and call rates of ~ 80 to 98%, GRL was found to be fast and highly (~ 99%) accurate for parentage assignment. An iterative approach was developed for training using the evaluation data, giving similar accuracy. For comparison, we used the Colony2 software that assigns parentage and sibship simultaneously to increase the power of the likelihood-based method and found that it has considerably lower accuracy than GRL. We also compared GRL with an exclusion-based method in which one of the parameters was estimated using GRL assignments.This method was slightly more accurate than GRL.

CONCLUSIONS

We show that GRL is a fast and accurate method of parentage assignment that can use dense, non-independent SNPs, with variable call rates and unknown genotyping error rates. By offering an alternative way of assigning parents, GRL is also suitable for estimating the expected proportion of inconsistent parent-offspring genotypes for exclusion-based models.

摘要

背景

亲权鉴定通常基于有限数量的不相关、独立的基因组标记(微卫星、低密度单核苷酸多态性(SNP)等)。经典的亲权鉴定方法是基于排除的(即基于违反孟德尔遗传的基因座)或基于似然的,假设基因座的独立遗传。对于真正的亲子关系,基因分型错误会导致孟德尔遗传的明显违反。因此,必须确定这种违反的最大比例,这由于基因座和个体之间的可变呼叫和基因型错误率而变得复杂。最近,使用高密度 SNP 芯片进行基因分型的成本降低,并且越来越多地用于遗传学研究和育种计划。然而,密集的 SNP 不是独立遗传的,违反了基于似然的方法的假设。因此,亲权鉴定通常假设排除的最大比例,或者在较小的独立标记子集上应用基于似然的方法。我们的目的是开发一种快速准确的密集 SNP 数据的三重亲权鉴定方法,而无需事先了解基因座和个体之间的基因分型错误或呼叫率。这种基因组关系似然(GRL)方法通过使用基因组关系来推断亲子关系,这些关系通常用于基因组预测模型中。

结果

使用 50 个具有 53427 至 55517 个 SNP 的模拟数据集,基因分型错误率为 1-3%,呼叫率约为 80-98%,GRL 被发现对于亲权鉴定快速且高度准确(~99%)。开发了一种迭代方法用于使用评估数据进行训练,给出了相似的准确性。为了比较,我们使用 Colony2 软件同时分配亲子关系和兄弟姐妹关系,以增加基于似然的方法的功效,发现它的准确性明显低于 GRL。我们还将 GRL 与基于排除的方法进行了比较,其中一个参数使用 GRL 分配来估计。该方法比 GRL 略准确。

结论

我们表明,GRL 是一种快速准确的亲权鉴定方法,可用于具有可变呼叫率和未知基因分型错误率的密集、非独立的 SNP。通过提供一种分配父母的替代方法,GRL 也适用于估计基于排除的模型中不一致的亲子基因型的预期比例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01c0/5960170/9c7d5dca31d9/12711_2018_397_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验