Suppr超能文献

混合生成对抗网络(Misc-GAN):一种用于图的多尺度生成模型。

Misc-GAN: A Multi-scale Generative Model for Graphs.

作者信息

Zhou Dawei, Zheng Lecheng, Xu Jiejun, He Jingrui

机构信息

Arizona State University, Tempe, AZ, United States.

HRL Laboratories, LLC, Malibu, CA, United States.

出版信息

Front Big Data. 2019 Apr 25;2:3. doi: 10.3389/fdata.2019.00003. eCollection 2019.

Abstract

Characterizing and modeling the distribution of a particular family of graphs are essential for the studying real-world networks in a broad spectrum of disciplines, ranging from market-basket analysis to biology, from social science to neuroscience. However, it is unclear how to model these complex graph organizations and learn generative models from an observed graph. The key challenges stem from the non-unique, high-dimensional nature of graphs, as well as graph community structures at different granularity levels. In this paper, we propose a multi-scale graph generative model named , which models the underlying distribution of graph structures at different levels of granularity, and then "transfers" such hierarchical distribution from the graphs in the domain of interest, to a unique graph representation. The empirical results on seven real data sets demonstrate the effectiveness of the proposed framework.

摘要

表征和建模特定图族的分布对于在从市场篮子分析到生物学、从社会科学到神经科学等广泛学科领域中研究现实世界网络至关重要。然而,目前尚不清楚如何对这些复杂的图组织进行建模以及如何从观察到的图中学习生成模型。关键挑战源于图的非唯一、高维性质以及不同粒度级别的图社区结构。在本文中,我们提出了一种名为 的多尺度图生成模型,该模型对不同粒度级别下图结构的潜在分布进行建模,然后将这种层次分布从感兴趣领域的图“转移”到唯一的图表示。在七个真实数据集上的实证结果证明了所提出框架的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d0/7931912/e365601aa88a/fdata-02-00003-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验