Li Yushi, Baciu George
IEEE Trans Image Process. 2021;30:4540-4554. doi: 10.1109/TIP.2021.3073318. Epub 2021 Apr 27.
Point clouds are the most general data representations of real and abstract objects, and have a wide variety of applications in many science and engineering fields. Point clouds also provide the most scalable multi-resolution composition for geometric structures. Although point cloud learning has shown remarkable results in shape estimation and semantic segmentation, the unsupervised generation of 3D object parts still pose significant challenges in the 3D shape understanding problem. We address this problem by proposing a novel Generative Adversarial Network (GAN), named HSGAN, or Hierarchical Self-Attention GAN, with remarkable properties for 3D shape generation. Our generative model takes a random code and hierarchically transforms it into a representation graph by incorporating both Graph Convolution Network (GCN) and self-attention. With embedding the global graph topology in shape generation, the proposed model takes advantage of the latent topological information to fully construct the geometry of 3D object shapes. Different from the existing generative pipelines, our deep learning architecture articulates three significant properties HSGAN effectively deploys the compact latent topology information as a graph representation in the generative learning process and generates realistic point clouds, HSGAN avoids multiple discriminator updates per generator update, and HSGAN preserves the most dominant geometric structures of 3D shapes in the same hierarchical sampling process. We demonstrate the performance of our new approach with both quantitative and qualitative evaluations. We further present a new adversarial loss to maintain the training stability and overcome the potential mode collapse of traditional GANs. Finally, we explore the use of HSGAN as a plug-and-play decoder in the auto-encoding architecture.
点云是真实和抽象物体最通用的数据表示形式,在许多科学和工程领域都有广泛的应用。点云还为几何结构提供了最具可扩展性的多分辨率合成。尽管点云学习在形状估计和语义分割方面取得了显著成果,但在三维形状理解问题中,三维物体部件的无监督生成仍然面临重大挑战。我们通过提出一种新颖的生成对抗网络(GAN)来解决这个问题,该网络名为HSGAN,即分层自注意力GAN,具有用于三维形状生成的显著特性。我们的生成模型采用一个随机代码,并通过结合图卷积网络(GCN)和自注意力将其分层转换为一个表示图。通过在形状生成中嵌入全局图拓扑结构,所提出的模型利用潜在的拓扑信息来充分构建三维物体形状的几何结构。与现有的生成管道不同,我们的深度学习架构具有三个显著特性:HSGAN在生成学习过程中有效地将紧凑的潜在拓扑信息作为图表示进行部署,并生成逼真的点云;HSGAN避免了每次生成器更新时多次判别器更新;HSGAN在相同的分层采样过程中保留了三维形状最主要的几何结构。我们通过定量和定性评估来展示我们新方法的性能。我们进一步提出一种新的对抗损失,以保持训练稳定性并克服传统GAN潜在的模式崩溃问题。最后,我们探索将HSGAN用作自动编码架构中的即插即用解码器。