Suppr超能文献

评估安大略省行政健康数据用于识别自闭症谱系障碍儿童和青少年的有效性。

Assessing the validity of administrative health data for the identification of children and youth with autism spectrum disorder in Ontario.

作者信息

Brooks Jennifer D, Arneja Jasleen, Fu Longdi, Saxena Farah E, Tu Karen, Pinzaru Virgiliu Bogdan, Anagnostou Evdokia, Nylen Kirk, Saunders Natasha R, Lu Hong, McLaughlin John, Bronskill Susan E

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

ICES, G1 06, Toronto, Ontario, Canada.

出版信息

Autism Res. 2021 May;14(5):1037-1045. doi: 10.1002/aur.2491. Epub 2021 Mar 10.

Abstract

Population-level identification of children and youth with ASD is essential for surveillance and planning for required services. The objective of this study was to develop and validate an algorithm for the identification of children and youth with ASD using administrative health data. In this retrospective validation study, we linked an electronic medical record (EMR)-based reference standard, consisting 10,000 individuals aged 1-24 years, including 112 confirmed ASD cases to Ontario administrative health data, for the testing of multiple case-finding algorithms. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and corresponding 95% confidence intervals (CI) were calculated for each algorithm. The optimal algorithm was validated in three external cohorts representing family practice, education, and specialized clinical settings. The optimal algorithm included an ASD diagnostic code for a single hospital discharge or emergency department visit or outpatient surgery, or three ASD physician billing codes in 3 years. This algorithm's sensitivity was 50.0% (95%CI 40.7-88.7%), specificity 99.6% (99.4-99.7), PPV 56.6% (46.8-66.3), and NPV 99.4% (99.3-99.6). The results of this study illustrate limitations and need for cautious interpretation when using administrative health data alone for the identification of children and youth with ASD. LAY SUMMARY: We tested algorithms (set of rules) to identify young people with ASD using routinely collected administrative health data. Even the best algorithm misses more than half of those in Ontario with ASD. To understand this better, we tested how well the algorithm worked in different settings (family practice, education, and specialized clinics). The identification of individuals with ASD at a population level is essential for planning for support services and the allocation of resources. Autism Res 2021, 14: 1037-1045. © 2021 The Authors. Autism Research published by International Society for Autism Research published by Wiley Periodicals LLC.

摘要

在人群层面识别患有自闭症谱系障碍(ASD)的儿童和青少年对于监测以及规划所需服务至关重要。本研究的目的是开发并验证一种利用行政健康数据识别患有ASD的儿童和青少年的算法。在这项回顾性验证研究中,我们将基于电子病历(EMR)的参考标准(由10000名年龄在1至24岁的个体组成,其中包括112例确诊的ASD病例)与安大略省行政健康数据相链接,以测试多种病例发现算法。为每种算法计算敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)以及相应的95%置信区间(CI)。在代表家庭医疗、教育和专科临床环境的三个外部队列中对最优算法进行验证。最优算法包括单次住院出院、急诊科就诊或门诊手术的ASD诊断代码,或3年内的三个ASD医生计费代码。该算法的敏感性为50.0%(95%CI 40.7 - 88.7%),特异性为99.6%(99.4 - 99.7),PPV为56.6%(46.8 - 66.3),NPV为99.4%(99.3 - 99.6)。本研究结果表明,仅使用行政健康数据识别患有ASD的儿童和青少年时存在局限性且需要谨慎解读。通俗总结:我们测试了利用常规收集的行政健康数据识别患有ASD的年轻人的算法(一组规则)。即使是最好的算法也会遗漏安大略省一半以上患有ASD的人。为了更好地理解这一点,我们测试了该算法在不同环境(家庭医疗、教育和专科诊所)中的效果。在人群层面识别患有ASD的个体对于规划支持服务和资源分配至关重要。《自闭症研究》2021年,14卷:1037 -

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验